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Abstract

Materials based on the perovskite crystal structure and its derivatives find many dif-
ferent applications in materials science, thanks to their compositional diversity and
wide variety of chemical and physical properties. In the context of materials discov-
ery, perovskite compounds with their fixed crystal structure represent ideal candidates
to study the interplay between chemical composition and properties.

In this work we focus on the double perovskite structure ABC2D6, and the proper-
ties that can be obtained with different combinations of elements in the four lattice
sites. In particular, we start by screening lead-free halide double perovskites to select
ideal candidates for photovoltaic applications using as criteria their ability to absorb
light in the visible range, their thermodynamical stability, their power conversion effi-
ciency and the mobility of the carriers. The first step of the screening process was
accelerated by machine learning via the use of a convolutional neural network to map
the composition to the band gap of the materials. High throughput screening of ma-
terials as in this case, relies on the possibility of fully enumerating the search space
and calculating the target property for all the elements in the space, while choosing a
compromise between accuracy and computational cost.

This kind of neural network-based regression model, however, does not explicitly
highlight the contribution of each element to the predicted property. To gain more
insight in the interaction between elements placed at different sites in the double per-
ovskite structure, and their relation to the band gap, we chose a machine learning
model with interpretable parameters, based on a message passing neural network
with a self-attention mechanism. We used this model to predict atomic energy lev-
els in the valence and conduction band of the materials and calculate the gap. The
weights that the network places on each lattice site when occupied by different ele-
ments allow us to classify the perovskites in families with specific behaviors.

Another possible approach consists in the inverse design of materials starting from
a desired property. For this task, deep generative models have proven to be powerful
tools, especially when studying very large chemical spaces. Here we used a dataset
of double perovskites to compare the performance of three generative models for the
inverse design of materials with a given formation energy. We defined several metrics
to assess the ability of the three models (a Variational Autoencoder, a Generative
Adversarial Network and a Reinforcement Learning model) to generate compositions
with the target property with high precision, while at the same time providing a high
number of diverse candidates with the desired property.
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1 Introduction

1.1 Perovskite solar cells

Perovskites are ternary compounds with chemical formula ABX3, where A is a cation
coordinated with 12 X anions, and B is a cation in octahedral coordination with 6 X
anions (Figure 1.1). This kind of crystal structure can accommodate a vast range

Figure 1.1 Perovskite structure ABX3

of elements, leading to the formation of materials with a wide variety of properties.
In particular, the A site can be occupied by large inorganic cations or small organic
cations, opening the possibility to form hybrid organic/inorganic structures [1]. Two
empirical geometric factors are commonly used to establish if a combination of ele-
ments can be stable in the perovskite structure, namely the octahedral factor

µ = rB

rX

, (1.1)

and the Goldschmidt tolerance factor [2]

t = rA + rX√
2(rB + rX)

, (1.2)
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where r indicates the ionic radius. Both parameters are based on a rigid spheres
model, where the elements touch to form close packed structures and cavities. The
octahedral factor is calculated by forming an octahedron of X atoms that touch each
other, and measuring how large can the B atom be if it has to be inserted inside the
central cavity. Empirically, it has been found that B and X can form an octahedral
coordination when 0.44 < µ < 0.90 [3]. The Goldschmidt tolerance factor t indicates
whether the A cation can fit in the cavity formed by the BX6 octahedra. A perovskite
is considered geometrically stable if 0.8 ≤ t ≤ 1, with a perfect cubic structure if
t = 1 and some distortion or tilting of the BX6 octahedra when t is closer to 0.8. With
values below 0.8 (A too small) or above 1 (A too large) the perovskite structure is un-
stable, but some perovskite-like phases might form, for example hexagonal structures
(µ < 0.8) or layered perovskites (µ > 1).

Perovskites find applications in many fields, such as light emitting diodes [4–6], pho-
tocatalytic water splitting [7, 8], photodetectors [9, 10], fuel cells [11, 12], lasers [13,
14], and solar cells [15–19]. Perovskite solar cells belong to the so-called third gener-
ation solar cells, where the generations conventionally are [20]

• First generation: single junction solar cells based on Si (single crystal or poly-
cristalline) and GaAs. These cells have high efficiency and long lifetime but also
high production cost.

• Second generation: thin films based on CdTe, Copper Indium Gallium Selenide
(CIGS), and amorphous Si. These are also based on single junctions, they have
a lower production cost due to fewer material needed for the thin film, but also
lower efficiency compared to the bulk material.

• Third generation: these cells are based on new materials with low manifacturing
costs, such as organic semiconductors, polymers, dyes, and perovskites, with
a single or multi junction architecture, with a thin film geometry or as quantum
dots.

The first perovskite-based solar cell, a dye-sensitized solar cell containing Methy-
lammonium Lead Iodide (MAPI) as organic sensitizer, was built in 2009 by Kojima
et al. [21] and was reported to have a Power Conversion Efficiency (PCE) of 3.8%.
However these structures showed very poor stability due to the dissolution of the
perovskite in the iodide-based liquid electrolyte. This value increased to 9.7% [22]
just a few years later when MAPI was used in a solid state solar cell. Today, the
most commonly used hybrid organic-inorganic perovskite solar cells are based on
MAPI, (MA)PbBr3 [23] or Formamidinium Lead Iodide (FAPI) or the mixed perovskites
(FA,MA)PbI3 and (MA,FA)Pb(I,Br)3 [1], and efficiencies as high as 25% can be achieved [24].
This would make them comparable in performance to commonly used materials such
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as CdTe, CIGS and polycrystalline Si. Furthermore, the components are easily avail-
able and the synthesis happens at low temperature, with a reduced production cost.

The solid state perovskite solar cells are composed of an absorber layer, an Elec-
tron Transport Layer (ETL), a Hole Transport Layer (HTL), a metal electrode and a
transparent electrode. The absorber layer, i.e. the perovskite, absorbs light and cre-
ates electron-hole pairs. It is important for this layer to absorb photons in the visible
range, around the peak of intensity of the solar spectrum. The generated electrons
and holes are then separated and carried via the ETL and HTL [26], respectively, to-
wards the electrodes and the external circuit. The HTL has the function of transferring
an electron to the oxidized perovskite and transport the holes away from the interface
to prevent carrier recombination, i.e. the annihilation of an electron and a hole to
produce energy in the form of photon or phonons. The highest occupied state of the
HTL must lie above the valence band of the perovskite to provide a driving force in the
right direction, and the HTL material needs to have a high hole mobility. Additionally,
it should have high photochemical stability, suitable solubility in organic solvent and
form films of good quality. Some commonly used HTL materials are organic materials
such as 2,2’,7,7’-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9’-spirobifluorene (spiro-
OMeTAD) or poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS),
or inorganic materials such as graphene oxide, carbon, CuSCN, CuZnSnS2, CuInS2,
CuI, Cu2O, CuO, and NiO. The ETL transfers the photogenerated electrons to the
electrode and blocks the holes at the interface with the perovskite. Also in this case
the band alignment needs to allow the current to flow in the right direction, i.e. with
the electrons moving from the high-energy conduction band of the perovskite to the
lower energy unoccupied states of the ETL. The ETL also needs high stability, high
electron mobility, and a good interface contact with the perovskite layer. Some widely
used examples are conductive oxides such as TiO2, SnO2, and ZnO [27]. The metal
electrode is usually Au or Al, while the conductive glass is Indium Tin Oxide (ITO) or
Fluorine-doped Tin Oxide (FTO). The device can have two architectures: n-i-p (regu-
lar) if the ETL follows the conductive glass, and p-i-n (inverted) if the light hits the HTL
first. In both cases the perovskite layer could be mesoporous or planar (Figure 1.3).

The outstanding performance of these materials is due to their high absorption
coefficient, long diffusion length, and high and balanced carrier mobility of electrons
and holes [28, 29].

From the point of view of the electronic structure, the presence of Pb2+ with a lone
pair in the s shell is crucial. The Valence Band Maximum (VBM) shows contributions
from the σ-antibonding state between the 6s orbital of Pb and 5p orbital of I, while
the Conduction Band Minimum (CBM) is formed mostly by the Pb 6p with a smaller
contribution from I 5s [31]. The states from the organic part lie far from the band
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edges, so the role of the organic cation is mostly structural stabilization. The strong
optical transition across the band gap has been attributed to the large contribution
of Pb 6s and Pb 6p states to the band edges [32]. The measured direct gap of 1.6
eV [33] is also in an ideal range for visible light absorption. Theoretical studies that
included Spin-Orbit Coupling (SOC) effects, revealed the presence of a splitting of the
conduction band, leading to an indirect gap 60 meV below the direct gap [34]. This
might contribute to the the observed low recombination rate and long lifetime of the
minority carriers, but does not negatively affect the optical absorption.

The character of the band edges also contributes to bands with relatively high dis-
persion. In a nearly free electron approximation (2.2) the carriers are treated as free
particles with kinetic energy Ekin = ℏ2k2

2m∗ , where m∗ is a corrected mass, known as
effective mass, that takes into account the interaction of the particle with the lattice.
High dispersion, i.e. low curvature radius, indicates that the effective mass is low,
and in MAPI as well as in many other semiconductors even lower than the electron
rest mass. This in turn contributes to having carriers with high mobility. The low ef-
fective mass, combined with the high dielectric constant, also affects the excitonic
properties of MAPI. An exciton is an excited electron-hole pair, bound together by an
attractive Coulomb interaction between the two elementary charges, screened by the
dielectric constant of the material ϵ. This bound pair can move through the crystal
as a quasi-particle of neutral charge and reduced mass µ∗ = m∗

em
∗
h/(m∗

e + m∗
h). In

semiconductors, where the dielectric constant is usually large, excitons can extend
over several unit cells (Mott-Wannier excitons). The binding energy EB, i.e. the en-
ergy required to transform an exciton into two free carriers, can be calculated from a
hydrogen-like model with the reduced mass and the screened Coulomb energy

EB = µ∗

m0

ERy

ϵ2 , (1.3)

where ERy = m0e4

8ϵ2
0h3c

= 13.6 eV is the Rydberg constant. The reported experimental
values for the exciton binding energy in MAPI varies from 2 to 50 meV, suggesting that
at least part of the excitons will dissociate in free carriers at room temperature [35–
37].

An important factor that can reduce the maximum efficiency achievable by a solar
cell is the loss of carriers via recombination. The recombination rate in a semiconduc-
tor with electron charge-carrier density n can be expressed as

dn
dt

= −kSRH · n− kradiative · n2 − kAuger · n3 . (1.4)

The three constants control the rate of Shockley-Read-Hall (SRH) (non-radiative)
trap-assisted recombination, band-to-band (radiative) recombination, and Auger (non-
radiative) recombination. In perovskite solar cells at working conditions, it has been
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shown that only a minor contribution comes from radiative and Auger recombina-
tion [1, 38]. The largest contribution derives from non-radiative recombination due to
trap states deep in the band gap. In MAPI, among the point defects with low formation
energy, only interstitial iodine and Pb vacancies form deep defect states. Moreover,
the recombination of electrons trapped at positive interstitials involves a large lattice
reorganization and therefore happens at a much lower rate than band-to-band transi-
tion. On the other hand, holes trapped at negative interstitals and Pb vacancies have
a recombination rate comparable to the radiative recombination rate and contribute
to decreasing the device efficiency [39]. Other sources of non-radiative recombina-
tion are the grain boundaries within the perovskite layer, and even more the interface
between the perovskite and the ETL or HTL [40]. Overall, perovskite solar cells are
less sensitive to defects than other inorganic semiconductors [1], and careful device
engineering can effectively limit the non-radiative recombination loss.

However, these materials still face some challenges, due to the instability of the
structure when exposed to humidity, light and heat, and the toxicity of Pb, that make
encapsultaion in glass and epoxy necessary for commercialization. Furthermore,
large scale application of these compounds, even encapsulated, is not ideal due to
the presence of Pb that needs to be disposed of at the end of the life cycle of the cell.
One possible route to solve this problem consists in substituting Pb2+ with Sn2+ or
Ge2+, because of their similar electronic structures.

The measured band gap of (MA)SnI3 is 1.2–1.4 eV [41], which enables a broader
absorption compared to MAPI [42]. However, the energy of the 5s orbital of Sn is
higher than that of Pb 6s, which makes the Sn-I bonds easy to break, leading to the
formation of Sn vacancies and, in presence of oxygen and water, the formation of
oxides and hydroxydes of Sn and and methylammonium iodide [43]. For this reason,
also tin-based perovskite compounds need to be encapsulated.

Ge-based compounds such as CsGeI3, (MA)GeI3, and (FA)GeI3 crystallize in a
corner-sharing trigonal structure. These compounds present a direct band gap that
ranges from 1.6 eV for CsGeI3 to 2.35 eV for (FA)GeI3, and strong absorption. How-
ever, similarly to thier Sn-based counterparts, they are highly unstable when exposed
to air due to the oxidation of Ge2+ to Ge4+ [44, 45].

Further studies have shown that improved optical properties and stability are pos-
sible for mixed compounds such as (MA)GeI3–yBry [46] and (MA)Sn1–xGexI3–yBry [47].

1.2 Double Perovskites

Another strategy consists in substituting Pb-based single perovskites with double per-
ovskites, with chemical formula ABC2D6. For solar cells, lead-free halide double per-
ovskites have attracted significant attention. In halide double perovskites C a is mono-
valent cation, often alkali metal, A and B are two cations with charge +1 and +3 or
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C

A B

D

Figure 1.5 Double perovskite structure ABC2D6

+2 and +2, and D is a monovalent anion, usually a halide. The structure (Figure 1.5)
is similar to that of a single perovskite but with alternated corner-sharing octahedra
AD6 and BD6. The A cation is again coordinated to 12 D anions. Also in the case of
double perovskites the stability can be empirically estimated via the octahedral and
Goldschmidt tolerance factors, by using an average of the radii of A and B

µdouble perovskite =
1
2(rA + rB)

rD

, (1.5)

tdouble perovskite = rC + rD√
2
[

1
2(rA + rB) + rD

] . (1.6)

Alternatively, a modified version of the Goldschmidt tolerance from Bartel et al. [48]
can be used

τ = rD
1
2(rA + rB) − nC

nC −
rC/

[
1
2(rA + rB)

]
ln {rC/

[
1
2(rA + rB)

]
}

 , (1.7)

where nC is the oxidation state of C. This new tolerance factor was found with the
Sure Independence Screening and Sparsifying Operator (SISSO) approach. The first
term in τ contains the ratio between the D anion and the A/B cations, and has the
same geometric interpretation of the octahedral factor. The term rC

[ 1
2 (rA+rB)] indicates

that when C and the mean of A and B have a similar size the perovskite structure,
where site C and A/B have very different environments, is unfavourable respect to
other structures where C and A/B have the same coordination. The oxidation state
of C nC increases the probability of forming a perovskite the more C is oxidized, but
it also increases the importance of the radii ratio of C and A/B. A stable perovskite is
expected when τ < 4.18.

To imitate the favorable electronic properties of MAPI, another cation with a lone
pair can be used. These include Tl+ and Bi3+, but Tl is known to be even more toxic
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than lead, so only Bi is a feasible candidate. One of the most extensively studied
halide double perovskites based on Bi is AgBiCs2Br6 [49–54]. This compound has
a large ( 1.9-2.1 eV) and indirect gap, so light absorption is weak (Figure 1.6). The
VBM has contributions from Ag 4d and Br 4p, while the CBM is composed of states
from Bi 6p and Br 4p antibonding states. The A cation doesn’t contribute to the band
edges. SOC effects are also very important in this material, due to the presence of
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Figure 1.6 Band structure of AgBiCs2Br6 (left) and orbital-projected density of states (right).
The (indirect) band gap is between the points Γ and L.

Bi states at the conduction band that experience a strong spin-orbit splitting [55]. The
calculated effective masses along the three principal axes are 0.57me/0.57me/0.15me

for the holes and 0.48me/0.28me/0.28me for the electrons, with an anisotropy ratio of
50% and 27% respectively. These values contribute to a good carrier mobility, despite
the high anisotropy. The charge carrier lifetime in AgBiCs2Br6 is larger than that of
lead-based halide single perovskites [56], which could allow the use of thicker films
to improve the efficiency. Due to the limitations that come from the band gap, the
efficiency of AgBiCs2Br6 never went beyond 6% [57]). A closely related compound
is AgInCs2Cl6 [58, 59], where Bi3+ is substituted with In3+. This material has a direct
gap, however, the parity-forbidden transition [60] makes it a weak absorber. A small
direct gap of 0.95 eV was found for AgTlCs2Br6 [61] but the high toxicity of Tl limits its
application.
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1.3 Band Gap Engineering

As mentioned before, the main limitation to the applicability of halide double per-
ovskites to photovoltaics is their large indirect gap. In the following, we discuss possi-
ble strategies to modify in a controlled manner the band gap of a compound. The first
strategy is by alloying, i.e. by substituting elements in an amount sufficient to have
the impurities interact and form bands. The band gap of a disordered solid solution
between ABC2D6 and AB’C2D6 can be estimated as [62]

EG(AB1−xB
′
xC2D6) = (1−x)·EG(ABC2D6)+x·EG(AB′C2D6)+b·x·(1−x) . (1.8)

The parameter b is an empirical factor known as bowing parameter. This is usually
possible only if the cations B and B’ have the same valency, such as in AgBi1–xSbxCs2Br6

[63, 64]. In this case, the gap decreases with increasing x but remains indirect, be-
cause Sb3+ and Bi3+ have the same electronic structure but the filled 5s states of
Sb3+ in the VB are higher in energy than the 6s states of Bi+, due to relativistic ef-
fects. Similarly, the gap can be manipulated by alloying at the halide site, as in
AgBiCs2Br6–xIx [65, 66], where the substitution of Br with I shifts the VBM at higher
energies and the CBM at lower energies, effectively reducing the gap. When the
oxidation state of the dopant element is different than the one in the host structure,
some charged defects will be formed to maintain the overall charge neutrality of the
structure. This generally limits the amount of dopant that can be introduced in the
material to less than 1 atom % [67], but can additionally change the symmetry of
the gap. When doping at the Bi site with In3+ or Tl3+, as in AgBi1–xInxCs2Br6 [64] and
AgBi1–xTlxCs2Br6, a ns2np0 cation is substituted with a (n − 1)d10ns0 cation. The
empty s states of the dopant, together with the empty s states of Ag, form a band
that shifts the CBM to Γ, while the removal of Bi lowers the VBM. Overall, the gap is
reduced when increasing Tl doping, due to the dominant effect of lowering the CBM,
and slightly increased when doping with In, due the the lowering of the VBM [67].
However, the gap remains indirect unless Bi is completely removed. The same effect
was observed in AgSb1–xInxCs2Cl6 [68].

Other studies have shown that the application of a pressure on AgBiCs2Br6 of 15
GPa narrowed the gap from an initial value of 2.3 eV to 1.7 eV, and to 2 eV after
the pressure was released [69]. Another factor that affects the band gap is the de-
gree of disorder in the Ag-Bi arrangement [70]. This can be controlled via the growth
temperature and speed [71].

1.4 High Throughput Screening of Double Perovskites

The large chemical space formed by (charge-balanced) single [72, 73] and dou-
ble perovskites is potentially very large and has been frequently explored via first-
principles based screening. In this context, a computational study by Volonakis et
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al. [74] showed the possibility of tuning the gap by substituting different halides at
the C site (Cl, Br, I), different monovalent cations at the A site (Cu, Ag, Au) and
different trivalent cations at B (Bi, Sb). All the structures obtained had an indirect
gap, but they suggested that a different A cation might induce an octahedral tilt and
make the direct transition possible (i.e. not symmetry-forbidden). However, in this
study the thermodynamic stability of said compounds was not considered. Filip et
al. [75] evaluated the thermodynamical stability and the electronic properties of the
compounds in the family ABCs2D6 (with A=Cu/Ag/Au, B = Sb/Bi, D = Cl/Br/I) via Den-
sity Functional Theory (DFT) using the PBE functional, and suggested that the solid
solution (Ag,Cu)BiCs2Cl6 could be synthetized and have optimal properties for photo-
voltaic applications. Dai et al. [76] studied 18 In- and Ga-based double perovskites
and found that four of these (CuInCs2Cl6, AgInCs2Br6, CuGaCs2Cl6, and AgGaCs2Br6)
had a direct gap in the desirable 0.9-1.6 eV range. However only one (AgInCs2Br6)
was found to be mechanically and thermodynamically stable. Zhao et al. [77] eval-
uated the structural and thermodynamical stability of 64 double perovskites (with
C=Cs, A=Na/K/Rb/Cu/Ag/Au/In/Tl, B=Bi/Sb and D=F/Cl/Br/I) and proposed 11 non-
toxic compounds with suitable band gaps and low carrier effective masses. In partic-
ular, InSbCs2Cl6 and InBiCs2Cl6 have promising direct bandgaps of 1.02 and 0.91 eV
respectively. However, it has been shown [78] that In+ can easily oxidate to In3+, and
therefore these materials are likely unstable. Volonakis et al. [79] showed that the in-
stability of In+ compounds decreases with increasing the size of the C cation, and that
a solid solution such as InBi(Cs,Ma,FA)2Br6 would be thermodynamically stable and
have a performance comparable to that of MAPI. Roknuzzaman et al. [80] studied 18
BiCuCD6 compounds with organic C cations (C = Cs2/MA2/FA2/CsMA/CsFA/MAFA,
D = Cl/Br/I), and proposed BiCuFA2I6 as most promising solar absorber based on its
optical and electronic properties. Ding et al. [81] systematically screened 760 double
perovskites of chemical formula A2+B2+Cs2D6. Structural stability was evaluated based
on the Goldschmidt tolerance factor, the octahedral factor and ab initio Molecular Dy-
namics (AIMD). The band gap of the stable materials was calculated first with the PBE
functional, and then with HSE06 for those compounds with a PBE gap in the range
0.5 eV to 1.75 eV. 14 direct gap compounds were found, 8 of them lead-free. Among
these, MnPtCs2F6 showed the best optoelectronic and transport properties. Cai et
al. [82] calculated the tolerance factors of 2000 double perovskites and screened the
1000 strutures predicted to be stable via PBE and HSE06 DFT calculations. 11 com-
pounds were found to be dynamically and thermodynamically stable, and with a max-
imum theoretical power conversion efficiency higher than 10%. Bartel et al. [83] used
a statistically learnt tolerance factor [48] to study the stability of 903 ABCs2Cl6 double
perovskites, and calculated the thermodynamical stability of the resulting compounds.
Of the 261 stable structures, 47 have a direct or quasi-direct band gap between 1 eV
and 3 eV, and do not contain toxic elements. 26 of the 47 structures contain an alkali
metal and a transition metal at the A/B position, and are referred to as triple-alkali
perovskites. The electronic structure was further investigated via many-body GW0
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and Bethe-Salpeter Equation (BSE) calculations. Some of these compounds showed
large exciton binding energies and electronic properties similar to those of layered
materials or insulating bulk materials, and properties potentially tunable by sublattice
mixing.
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2 Electronic Structure Calculations

2.1 Density Functional Theory

The central quantity needed to quantum mechanically describe a system of atoms is
the wavefunction [84–86]. A system at any moment is said to be in a state that can
be described by a vector |Ψ⟩ that contains all the information about said system. The
wavefunction is the projection of the system’s state in the spin-spatial coordinates
space. For example, a system of electrons in a state |ψ⟩ can be described by a
wavefunction ψ(x):

⟨x|ψ⟩ = ψ(x) , x = (r, ω) . (2.1)

Here we use x to indicate spin-spatial coordinates, and r and ω to indicate the
spatial part and the spin part separately. The overall electronic wavefunction for a
N -electron system can be written as a combination of N one-electron spin orbitals
φ, that respects the Pauli exclusion principle and the principle of antisymmetry of
fermionic wavefunctions. This can be achieved by combining the spin-orbitals in a
Slater determinant

⟨x|ψ⟩ = ψ(x1,x2, ...,xN) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) . . . φN(x1)
φ1(x2) φ2(x2) . . . φN(x2)

...
... . . . ...

φ1(xN) φ2(xN) . . . φN(xN)

∣∣∣∣∣∣∣∣∣∣
. (2.2)

Each spin orbital has a spatial part χ(r) and a spin part σ(ω) = α(ω) or β(ω) (i.e.
spin up or spin down)

φl(xk) = χl(rk)σl(ωk) . (2.3)

Here the index l identifies the spin orbital and the index k identifies the electron. Spin
orbitals respect the orthonormalithy condition∫

dxiφ
∗
k(xi)φ∗

l (xi) =
∫
dωiσk(ωi)σl(ωi)

∫
driχ

∗
k(ri)χl(ri) = δσk,σl

δχk,χl
, (2.4)

where

δi,j =
{

0 if i ̸= j
1 if i = j

. (2.5)

The spatial part can be expanded in as a linear combination of (normalized) atomic
orbitals (LCAO)

χi(r) =
K∑

µ=1
(C)µiϕµ(r) . (2.6)



14

Every spin orbital can be written as a combination of a fixed set of atomic orbitals ϕ
(i.e. the basis set) with the appropriate coefficient. The coefficients can be found by
solving the Schrödinger’s equation that describes the system.

If we consider a system composed of N electrons and M nuclei, we can describe
their interaction with the following Hamiltonian operator

Ĥ =

T̂e︷ ︸︸ ︷
−

N∑
i=1

1
2∇

2
i

T̂N︷ ︸︸ ︷
−

M∑
A=1

1
2MA

∇2
A

V̂Ne︷ ︸︸ ︷
−

N∑
i=1

M∑
A=1

ZA

riA

V̂ee︷ ︸︸ ︷
+1

2

N∑
i,j=1
i ̸=j

1
rij

V̂NN︷ ︸︸ ︷
+1

2

M∑
A,B=1
A ̸=B

ZAZB

RAB

(2.7)

where the five terms indicate, respectively, the kinetic energy of the electrons and nu-
clei, the electron-nucleus attraction, the electron-electron repulsion and the nucleus-
nucleus repulsion (here in atomic units). With this formulation of the Schrödinger’s
equation, the electronic and nuclear degrees of freedom are coupled to each other
and can not be separated. However, it is common to apply the Born-Oppenheimer
approximation and express the total wavefunction as a product of two independent
wavefunctions (one for electrons and one for the nuclei) calculated at a fixed nuclear
configuration RA

Ψ({xi}, {RA}) = ψe({xi}; {RA})× ψN({RA}) . (2.8)

The two wavefunctions ψe and ψN are calculated as eigenfunctions of the electronic
and nuclear Hamiltonians Ĥe and ĤN

Ĥeψe({xi}; {RA}) = (T̂e + V̂Ne + V̂ee)ψe({xi}; {RA}) = Eeψe({xi}; {RA})
ĤNψN({RA}) = (T̂N + V̂NN)ψN({RA}) = ENψN({RA}) .

(2.9)

The coupling term

C = −1
2

M∑
A=1

1
MA

(∇2
Aψe)ψN + (∇Aψe)∇AψN (2.10)

is therefore neglected. If we apply Ĥ to ψeψN we notice that ψeψN is not an eigen-
function of Ĥ

ĤψeψN = C + EψeψN (2.11)

but considering that the motion of the nuclei is orders of magnitude slower than that
of the electrons, it is reasonable in many cases to consider them as static respect to
the electrons, and not include C in the further calculations.
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Additionally, the N-electrons wavefunction depends on 4N coordinates (3 spatial
and one spin degrees of freedom per electron) and this is often untreatable except
in the case of very small systems. One possible approach to mitigate this prob-
lem is given by Density Functional Theory (DFT). Within the DFT framework, the
Schrödinger’s equation is reformulated in terms of electron density, which depends
only on 3 spatial coordinates plus the spin. In this context, the density operator is
defined as

n̂(r) =
N∑

i=1
δ(r− ri)⇒ n(r) = ⟨ψ|n̂(r)|ψ⟩ (2.12)

and it allows to rewrite the electron-nucleus attraction operator V̂Ne as

V̂Ne →
N∑

i=1
v(ri)

N∑
i=1

v(ri) =
N∑

i=1

∫
drv(r)δ(ri − r) =

∫
drv(r)n̂(r).

(2.13)

In DFT this term is known as external potential.

The foundations of the DFT framework are two theorems by Hohenberg and Kohn
(HK) [87], which affirm that:

• The ground state wavefunction of an N-electron system is a unique functional
of the ground state electron density, which in turn determines (up to a constant
shift) the local potential experienced by the system

• The ground state energy of an N-electron system is a unique functional E0[n0] of
the ground state electron density n0(r), and this electron density is the one that
minimizes the energy functional E [n].

For an electronic system subject to the external potential v(r) with electron density
n(r) the energy functional is

Ev[n] = ⟨ψ[n]|T̂e + V̂ee + V̂Ne|ψ[n]⟩

= ⟨ψ[n]|T̂e + V̂ee|ψ[n]⟩+
∫

drv(r)n(r)

= F [n] +
∫

drv(r)n(r)

(2.14)

F [n] is known as internal energy functional because it’s not explicitly dependent on
the specific geometry of the system.
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Kohn and Sham (KS) [88] re-framed DFT to make it tractable in practice. The
HK theorems allow us to construct a fictitious system of non-interacting electrons
(V̂ee = 0̂) in a potential vKS(r) chosen such that its ground state electron density
equals that of the real fully interacting system. The Hamiltonian for this system can
therefore be expressed as

ĤKS = T̂e + V̂KS . (2.15)

For a system of non-interacting electrons, the kinetic energy can be defined exactly,
while the internal energy functional can be expressed as

F [n] = TKS[n] + (F [n]− TKS[n])
= ⟨ψKS[n]|T̂e|ψKS[n]⟩+ EHxc[n]

(2.16)

The term EHxc[n] includes the Hartree energy (i.e. classical electrostatic repulsion
for a certain charge distribution) and the exchange-correlation energy.

EHxc[n] = EH [n] + Exc[n] = 1
2

∫ ∫
dr1dr2

n(r1)n(r2)
r12

+ Exc[n] . (2.17)

The exchange energy represents the repulsion between electrons with the same spin
as a consequence of the Pauli exclusion principle. The correlation reflects the fact
that the motion of one electron is affected by all the other electrons in the system

The final expression of the ground state energy is therefore

E0 = TKS[n0] + EHxc[n0] +
∫

drv(r)n0(r). (2.18)

The exchange-correlation term appears only in a quantum mechanical treatment of
the electrons, and needs to be approximated. The following are well known classes
of exchange-correlation functionals:

• Local Density Approximation (LDA): the exchange-correlation energy density in
one point in space depends only on the value of the electron density in that
specific point. Its expression equals that of a uniform electron gas having the
same electron density.

• Generalized Gradient Approximation (GGA): the exchange-correlation energy
depends both on the local value of the density as in LDA, but also on its gradient.

ϵGGA
x/c [n(r)] = ϵLDA

x/c [n(r)] + ∆ϵGGA
x/c [n(r)]

[
∇n(r)
n(r)4/3

]
(2.19)

• meta-GGA: the exchange-correlation energy depends on the kinetic-energy den-
sity.

τ(r) =
N∑

i=1

1
2 |∇ψKS(r)|2 (2.20)
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• Hybrid functionals: the exchange-correlation energy is a linear combination of
exact exchange, that can be calculated following the Hartree-Fock method on
Kohn-Sham states, and a DFT exchange-correlation energy calculated from
some other functional.

Exc = (1− α)EDF T
xc + αEHF

x (2.21)

The coefficient α has to be determined and varies across different functionals
(e.g. PBE0 has α = 0.25)

• Range separated hybrid functionals: only short range (SR) exchange is added,
while at the long range the exchange is fully GGA

Exc = (1− α)EDF T,SR
x (µ) + αEHF,SR

x (µ) + EDF T,LR
x (µ) + EDF T

c (2.22)

Here µ indicates the cutoff between short range (SR) and long range (LR).

The choice of the functional is critical, and and needs to be made with great care.
Despite the involved approximations, there are nowadays many functionals available
that have been used countless times on different chemical systems, and lead to ac-
curate results in many fields of computational chemistry.

After choosing the appropriate exchange-correlation functional and basis set, the
ground state energy and density can be found by with an iterative scheme known as
self-consistent field, that involves the following steps:

1) Make an initial guess for the coefficients of the basis set expansion

2) Construct the first density

3) Use the density to construct the KS Hamiltonian

4) Solve to find new coefficients and the ground state energy

5) Use the new coefficients to construct an updated density

6) Repeat steps 3-5 until the difference between the current density and energy
and those at the previous step are below a user-defined convergence threshold

2.2 Electrons in Periodic Systems

Crystalline materials are composed of atoms (or molecules) that repeat regularly in a
periodic structure [89]. Mathematically, this can be described with a lattice L and a
basis B. The lattice is a set of points in space that forms an infinite periodic pattern

L(x) =
∑

n

δ(x− na) , (2.23)
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from integer combinations of linearly independent basis vectors a. Every pair of points
in the lattice are connected by vectors of the type

R = n1a1 + n2a2 + n3a3 (2.24)

The basis is a motif, such as an atom, a group of atoms, or a molecule, that is repeated
in correspondence to each point of the lattice. The convolution of lattice and basis
forms the crystal C (Figure 2.1)

C(x) = L(x) ⋆ B(x) =
∫ ∞

−∞
L(x′)B(x− x′)dx′ =

∑
n

B(x− na) . (2.25)

Three lattice vectors (in a 3-dimensional lattice) define a unit cell that can be trans-

Lattice CrystalBasis

Figure 2.1 Crystal with a honeycomb structure formed from the convolution of a hexagonal
lattice with a biatomic basis

lated to fill up the entire space without any overlap with other cells, and without leaving
any void. The smallest possible unit cell, i.e. the one that contains only one lattice
point, is known as primitive cell. It is possible to define different primitive cells on the
same lattice, and such cells don’t necessarily reflect the symmetry of the underlying
lattice. A specific type of primitive cell that reflects the symmetry of the lattice is the
Wigner-Seitz cell. This kind of cell is defined by choosing one lattice point as center
and placing planes that bisect the distance between this point and its nearest neigh-
bors. The volume inside these planes contains all the points in space that are closer
to the central lattice point than to any other lattice point (Figure 2.2).

The filling of all space with a periodic arrangement of cells is possible only for the
so-called Bravais lattices, i.e. lattices that have only translations and two-, three-, four-
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Primitive Wigner-Seitz Non primitive

Figure 2.2 Examples of primitive, Wigner-Seitz and non primitive cells in a 2-dimensional
hexagonal lattice

, and six-fold rotations as symmetry operations. For each Bravais lattice, a reciprocal
lattice can be defined. The basis vectors of the reciprocal lattice are

bi = 2π aj × ak

ai · (aj × ak) = 2π
Vcell

aj × ak (2.26)

and satisfy the condition
ai · bj = 2πδij . (2.27)

Mathematically, the reciprocal lattice is the Fourier transform of the real space lattice
(or direct lattice) and it can be interpreted as the lattice as seen in momentum space.
It is often convenient to work in reciprocal space, as many physical entities in periodic
crystals are derived from planewaves that have the periodicity of the lattice. This is
possible only for a set of wavevectors G that respect the condition

eiG(R+r) = eiGr ⇒ G ·R = 2πn, n ∈ Z (2.28)

From this we can see that G vectors are actually integer linear combinations of recip-
rocal lattice vectors

G = n1b1 + n2b2 + n3b3 , (2.29)

and that the reciprocal lattice is also a Bravais lattice. The Wigner-Seitz cell of the
reciprocal lattice is also known as first Brilluoin zone.

The concept of lattice is useful to describe the behavior of valence electrons in the
periodic potential formed by the ions in a crystal. According to Bloch’s theorem [90,
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91], when the wavefunction is subject to a translation T by a lattice vector R, then the
resulting wavefunction can only change by a phase factor

TRψ(r) = ψ(r + R) = eikRψ(r) . (2.30)

This holds true if the wavefunction has the form

ψk(r) = eikruk(r) , with uk(r) = uk(r + R) , (2.31)

i.e. when the wavefunction is a planewave modulated by a periodic function uk. These
are known as Bloch functions. Given that eiGR = 1, the wavevector k can always be
considered as confined inside the first Brillouin zone, because a wavefunction ψk′ with
wavevector k′ = k + G larger than the first Brillouin zone, would be equivalent to ψk.

Until now we have relayed on the concept of an infinite lattice, although a real crystal
is finite. We can still consider the crystal as "infinite" if we impose periodic boundary
conditions on the wavefunction, i.e. if the wavefunction translated for a large number
of cells N = N1N2N3 (as large as in a macroscopic crystal) equals the wavefunction
in the first cell

ψk(r + (N1a1 +N2a2 +N3a3)) = eik(N1a1+N2a2+N3a3)ψk(r) = ψk(r) . (2.32)

This is true if

eik(N1a1+N2a2+N3a3)ψk(r) = 1⇒ k = n1

N1
b1 + n2

N2
b2 + n3

N3
b3 . (2.33)

Equation 2.33 suggests that k needs to be quantized, however in a macroscopic crys-
tal the number of cells will be so large that k can be considered continuous.

Bloch functions are one-electron wavefunctions and solutions of a Schrödinger
equation with a kinetic energy term and a periodic potential[

−1
2∇

2 + V (r)
]
ψ = Eψ , with V (r) = V (r + R) . (2.34)

When restricted to the first Brillouin zone, this gives rise to a family of eigenfunctions
ψnk with eigenvalues Enk. For each n the energies in the N points k define an energy
band. Each band in the first Brillouin zone can accomodate 2N electrons (N with
spin up and N with spin down). Also to calculate the total energy of the crystal with
contributions from all electrons, it is sufficient to let k vary inside the first Brillouin zone.

To solve the Schrödinger equation in a periodic potential [92, Chapter 4] we can ex-
pand the potential in a Fourier series using the reciprocal space vectors G to respect
the periodicity of the lattice

V (r) =
∑
G
VGe

iGr . (2.35)
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The same can be done with the periodic part of the Bloch wavefunctions (here we
temporarily drop the labels nk for ease of notation)

u(r) =
∑
G
CGe

iGr . (2.36)

This leads to the following equation[
E − V0 −

ℏ2

2me

(k + G)2
]
CG =

∑
|G′|̸=0

VG′CG−G′ . (2.37)

Here we explicitly write the reduced Planck constant ℏ and the electron mass me

instead of using atomic units. If VG = 0 for all |G| ̸= 0, we obtain a free electron
model, with energy

E = V0 + ℏ2

2me

(k + G)2 . (2.38)

In this case the dispersion relation E(k) has a parabolic shape with a kinetic energy
ϵk+G = ℏ2

2me
(k + G)2 and an offset V0. This is also the zeroth order approximation in

perturbation theory. If VG is small for all |G| ̸= 0, we can use the first order approxi-
mation to get an additional term

E = V0 + ϵk+G −
∑

|G|̸=0

|VG|2

ϵk+G − ϵk
. (2.39)

This is the nearly free electron model, i.e. for an electron that moves in a weak periodic
potential. This holds true as long as |k + G| ≠ |k|. For the case where |k + G| ≃ |k|,
the energy becomes

E = V0 + ϵk + ϵk+G

2 ±
√
|VG|2 +

(
ϵk − ϵk+G

2

)2
(2.40)

and for the specific case where |k + G| = |k|, the energy is

E = V0 + ϵk ± |VG| (2.41)

If we introduce q = G
2 + k, and expand around small values of q we get

E = V0 + ϵG
2

+ ϵq ± |VG|
(

1 + ϵG

2|VG|2
ϵq

)
(2.42)

We can set the zero at E0 = V0 + ϵG
2
− |VG| and define

1
m∗

±
= 1
me

(
1∓ ϵG

2|VG|

)
, (2.43)
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and finally write the two values of the energy as

E− = ℏ2q2

2m∗
−

= −ℏ2q2

2mv

E+ = Egap + ℏ2q2

2m∗
+

= Egap + ℏ2q2

2mc

,

(2.44)

where Egap = 2|VG| is known as band gap. The mass m∗
± is known as effective mass.

Using this concept, we can approximate the motion of an electron in a weak periodic
potential as that of a free electron (i.e. its energy is kinetic and has a parabolic disper-
sion) but with a modified mass that takes into account the interactions with the lattice.
The lowest energy band above Egap is known as conduction band and has a positive
curvature and therefore a positive effective mass m∗

+ = mc. The highest band below
the band gap is the valence band, and has negative curvature and therefore negative
effective mass m∗

− = −mv.

It is also possible that in some directions the bands overlap, so the material overall
doesn’t have a gap. Based on this we can classify the materials in

• Metals:

- If the material has an odd number of valence electrons per unit cell, and
remembering that a band can accomodate 2N electrons, then the band
will be only half filled, and even a small amount of energy can promote the
electrons to the higher continuous energy states. Some examples of these
metals are Li, Na, K, Rb, Cs, Cu, Ag, and Au.

- If the material has an even number of valence electrons but the bands over-
lap in some direction, there will be empty states in the lower band and filled
states in the upper band. If this number is of the order of N , the material
will also be metallic. Examples of these case are Zn, Cd, Ca, Mg, and Ba.

• Semimetals: If the bands have a small overlap and the unit cell contains an even
number of valence electrons, the number of empy states in the lower band and
filled states in the upper band will be much smaller than N , so the materials is
called semimetal. Examples of semimetals are As, Sb, Bi, Sn, and graphite.

• Semiconductors: If there is a gap that allows a few electrons to occupy the
conduction band at room temperature (approximately between 0.1 eV and 2eV)
the materials is a semiconductor. Examples of semiconductors are Ge, Si, InSb,
GaAs, AlSb, InAs, InP.

• Insulators: If the gap is large so the electrons can’t be excited to the conduction
band the material is an insulator. Examples of insulators are diamond and Al2O3
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Figure 2.3 Electron and hole bands. Adapted from Figure 8 Chapter 8 in reference [90]

2.3 Electronic Transport in Semiconductors

The dispersion relation ϵe(k) indicates the effect of the crystal potential on the motion
of electrons. These electrons will move with velocity

v = ∇kϵ(k)
ℏ

. (2.45)

When an external force is applied, such as an electromagnetic field, this will be equal
to

F = ℏ
dk
dt

. (2.46)

When all the states in a band are filled, the electrons can’t carry a current even if
an electromagnetic field is applied (unless this field has enough energy to promote
electrons to the next unoccupied band and leave the current band partially filled).
Because of the inversion symmetry k → −k in the Brillouin zone, the sum of the
wavevectors of all the electrons in a filled band is zero. If one electron is missing, i.e. if
one electron has been excited to the upper band via temperature effects or absorption
of light, a current can be carried, and the total wavevector of the system becomes−ke.
In this case, instead of treating the collective motion of all the remaining electrons,
it’s possible to write the equations of motion of a single particle know as hole that
correspond to a missing electron. The wavevector of the hole is kh = −ke and its
dispersion relation ϵh(kh) = −ϵe(ke) (Figure 2.3). Given that ∇kϵ(kh) = ∇kϵ(ke), the
velocity of the hole will be

vh = ve (2.47)
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Figure 2.4 Movement of electrons and a hole in an electric field. Adapted from Figure 9
Chapter 8 in reference [90]

The hole moves in the same direction with the same velocity of the electron. The
equation of motion of an electron and a hole in an electromagnetic field are

ℏ
dke

dt
= −e (E + ve ×B)

ℏ
dkh

dt
= e (E + vh ×B) .

(2.48)

The equation of motion of the hole is that of a positively charged particle of charge e.
When the field is applied and the bands are isotropic the acceleration of the particles
is

dv

dt
= 1

ℏ

(
d2ϵ

dk2
dk

dt

)
=
(

1
ℏ2
d2ϵ

dk2

)
F = 1

m∗F , (2.49)

or for an anisotropic case

dvi

dt
=
(

1
ℏ2

d2ϵ

dkidkj

)
Fj =

( 1
m∗

)
ij
Fj (2.50)

which shows again how the electrons or holes move as free particles but with a mass
that depends on the curvature of the band in which they reside.
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3 Artificial Neural Networks

3.1 Feedforward Neural Networks

Artificial neural networks [93, 94] are used to approximate a non-linear function that
maps an input x to a label y, which could either be a category or take continuous
values. The parameters of the mapping need to be learned from available data, i.e.
the training set. The basic building block of a neural network is the neuron, a unit that
takes in an input x, applies first a linear transformation by multiplying it by a weight
matrix W and adding a bias b, and successively applies a non-linear transformation
σ to the output. In analogy to the action of biological neurons this function is known
as the activation function. Figure 3.1 shows an example of a neuron i that takes
three scalar inputs and returns the output yi = σ

(∑3
j=1 wijxj + bi

)
. Several neurons

stacked and connected to each other form the network architecture. The layers in
between the input and output are called hidden layers:

h(1) = σ1(W(1)x + b(1))
h(2) = σ2(W(2)h(1) + b(2))

...

ŷ = σN(W(N)h(N−1) + b(N)) .

(3.1)

Figure 3.2 represents a simple example of a neural network with two hidden layers.
Each connection represents the action of multiplying by the corresponding weights,
adding the bias and applying the non-linear transformation. When all the units of a
layer are connected to the next, such a layer is referred to as fully connected. The
activation function allows to learn more complex mappings respect to a simple linear
regression. In fact, a network consisting of a sequence of linear layers without acti-
vations would be simply equivalent to a single linear transformation where the weight
matrix is the product of the weight matrices in all the layers, and the bias is a linear
combination of the biases in each layer. In principle, any non-linear function could
be used as activation, however these are normally selected based on ease of calcu-
lation, the range of their output, and their gradient. In particular, the gradient of the
activation functions affects the rate at which the network parameters will be updated
during learning.
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Some examples of non-linear activation functions (Figure 3.3) are the following:

• The rectified linear unit (ReLU) returns 0 if the input is negative and the input
itself if positive. This activation function is the simplest and allows fast calcula-
tions, because its gradient is always either 0 or 1 depending on the sign of the
input.

ReLU(x) = max(0, x) (3.2)

• Leaky ReLU is a variation of ReLU where the gradient below 0 takes a small
positive value α

LeakyReLU(x) = max(αx, x) (3.3)

• The exponential linear unit (ELU) is similar to LeakyReLU but it has an exponen-
tial form below zero.

ELU(x) =
{
x, for x ≥ 0
α(ex − 1), for x < 0

(3.4)

• The sigmoid function returns values between 0 and 1, so it’s often used when
the output value is a probability.

sigmoid(x) = 1
1 + exp (−x) (3.5)

• The hyperbolic tangent function returns values between -1 and 1, and it helps
centering the data around 0, which can be beneficial for the learning process

tanh(x) = exp (x)− exp (−x)
exp (x) + exp (−x) (3.6)

• The softmax function returns positive values that sum up to 1, so it can be used
in multi-class classification problems, where the sum of the probabilities for each
class must be 1. Normally it’s used only in the output layer.

softmax(xi) = exp (xi)∑
j exp (xj)

(3.7)

The parameters of the network (weights and biases, here collectively noted as θ)
are learned from the data by minimizing a loss function J(θ) that describes how well
the output of the network matches the corresponding training label. Typical examples
of loss functions are the mean absolute error or mean squared error for regression
problems, and the cross entropy loss for classification problems. The parameters
are first initialized as small random numbers, then the gradient of the loss function is
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Figure 3.3 Some examples of activation functions. The input is a vector of 100 evenly spaced
points in the interval [-10,10]

calculated with respect to said parameters, and the weights are iteratively updated to
approach the minimum of the loss function:

θt ← θt−1 − η∇θJt(θt−1) . (3.8)

Here η indicates the learning rate and it controls the magnitude of the weights update,
t is the update step, and ∇θ is the gradient of the loss function respect to the param-
eters of the network. Given that the loss function is defined for a single datapoint,
and the overall loss is the average of the loss function over the whole training set, one
would need to calculate the gradient for each datapoint at each iteration. However,
to reduce the computational cost, the gradient is approximated as the gradient cal-
culated for a subset (or minibatch) randomly sampled at each iteration. This method
is known as Minibatch Stochastic Gradient Descent (MSGD). The optimum size for
the minibatches is a trade-off between accuracy in the estimation of the gradient, and
frequency of the parameters update. The learning rate can be constant throughout
the optimization or it can follow some different update schemes, for example it can
start at higher values at the beginning of the optimization and then decrease while
approaching the minimum. The gradient respect to the parameters in all the layers of
the network is calculated via the chain rule starting from the output layer, as the out-
put of each layer depends on the parameters of the previous layers. This procedure
is known as backpropagation.
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The objective of neural neural network-based models is not only to minimize the
loss function on the training dataset, but to perform equally well on unseen data, i.e.
it has to be able to generalize. A model that performs well only on the training set but
not on an unseen validation set is said to be overfitting, as opposed to underfitting,
i.e. a model that has high loss on both training and validation sets (Figure 3.4). The
fitting capacity of the model, or its complexity, essentially depends on the number of
parameters that it contains. Too low complexity will lead to underfitting the data, while
too high complexity is likely to produce overfitting. When manipulating the number
of parameters of the models doesn’t solve the problem of overfitting, there are other
regularization techniques that can be put in place.

• Early stopping: At the beginning of the training both the training and the valida-
tion loss should decrease. When the model starts memorizing the training set
and fit the noise, the training loss will keep decreasing but the validation loss will
either reach a plateau or might start to increase. By monitoring the two losses,
or any other metric that represents the performance of the model, a number of
iterations that gives the optimal performance can be found.

• Weight decay, consists in adding a penalty term to the loss function that is pro-
portional to the square norm of the weights λ||W||22, with a hyperparameter λ
to control the strength of the regularization effect. In this way, while minimiz-
ing the loss function the model will also keep the weights small, and have an
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overall low complexity. Weight decay can also be implemented with an L1 norm
(λ||W||1), however, while the L2 norm drives all the weights to approach zero
but with higher penalty for the largest ones and lower penalty for the smallest,
the L1 norm pushes all the weights towards zero equally, so at the end of the
training there will be some neurons with zero weight. This could also work as a
feature selection method.

• Dropout consists in randomly replacing a certain fraction of the neurons in a
hidden layer with zeros, with a certain probability p

h′ =


0, with probability p
h

1− p, with probability 1− p
(3.9)

In this way, the output of the layer that contains the dropout does not depend
on the neurons that were dropped out, and the following neurons can’t adapt to
form a predefined path in the network. This a technique simulates the training
of an ensamble of networks with a smaller number of neurons.

3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are neural networks designed to work on data
that can be represented as a grid, for example an image represented as a 2-dimensional
grid of pixels [93–95]. The task of a CNN is to learn the spatial structure of the input
and extract features from it (for example edges and shapes of the objects in an image)
to pass to the next layer. CNNs are built to respect the principles of

• Locality : the feature map around one pixel should be more sensitive to its local
surroundings and less sensitive to the pixels far away from it.
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• Translational equivariance: a shift in the original image should result in a corre-
sponding shift in the feature map.

The hidden layers of a CNN can therefore be expressed as

Hi,j =
∑

a

∑
b

Ka,bXi+a,j+b + b , (3.10)

where X is the input, (i, j) is the position of each pixel, b is the bias and K is the
convolutional kernel or filter. The elements of the kernel and the bias are parameters
learned from the data. The kernel slides along the image and at each step the ele-
ments of the kernel and the corresponding elements of the image are multiplied and
summed (Figure 3.5). The kernel can start from the corner of the image and remain
within its margins, so that a kernel of size kh × kw on an image of size xh × xw can
slide for (xh − kh + 1) × (xw − kw + 1) steps, or it’s also possible to add a constant
padding around the input to allow more steps. Additionally, the input can have more
than 2 dimensions (such as 3 color channels in an image) and the hidden layers can
have additional dimensions as well.

Hi,j,d =
∑

a

∑
b

∑
c

Ka,b,c,dXi+a,j+b,c + b (3.11)

Convolution operations are followed by a non-linear activation function as in feedfor-
ward neural network, and can be also followed by a pooling operation. Pooling layers
are used to select or aggregate information, and reduce the size of the feature map.
They consist in a window of fixed size that slides over the feature map and computes
one value using all the elements of the feature map included in the window. These
values can be computed as the mean of the values in the window (average pooling),
or the maximum among the values in the window (max pooling, Figure 3.6).
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Input
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13 14 15

2x2 max pooling

Figure 3.6 Example of max pooling
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3.3 Message Passing Neural Networks

Message passing neural networks [96] are a type of neural network designed to work
on graphs. A graph G = (V,E) is a set of nodes V and edges E that connect pairs
of nodes. A node v is associated with a feature vector xv and the edge connecting
nodes v and w with features evw. A graph can be directed if the order of the nodes in
the pair matters, or undirected otherwise. For example, an undirected graph can be
used as a representation of a molecule or crystal, where the nodes are atoms and the
edges are bonds.

In a message passing neural network, the forward pass has two phases: a message
passing phase that runs for T iterations and a readout phase. At each step t of the
message passing phase, each node is associated to a hidden state ht

v, with the initial
hidden state h0

v being simply the input feature of the node v. A message functionMt is
used to aggregate information from the hidden state of the node itself, from its nearest
neighbors N(v) and from the edges connecting the node to its neighbors. The sum
of all the individual contributions mt+1

v is known as message

mt+1
v =

∑
w∈N(v)

Mt(ht
v, h

t
w, evw) . (3.12)

The hidden state is updated using an update function Ut to get the next hidden state

ht+1
v = Ut(ht

v,m
t+1
v ) (3.13)

The readout phase then computes a feature vector for the whole graph, using the
final hidden state of all the nodes

ŷ = R(hT
v |v ∈ G) (3.14)

Some examples of functions used for message, update and readout functions are
the concatenation of feature vectors, sum, mean, learned matrices, activation func-
tions, or neural networks. Figure 3.7 shows a simple example of message passing
step in a 3-node graph.

3.4 Attention Mechanisms

The attention mechanism [94] was first adopted in machine translation applications,
and specifically to improve the performance of models that deal with long sequences
of words. This method consists in calculating a weighted sum of a representation of
the input, where the weight of each part of the input (such as the weight assigned
to each word in a sentence to be translated) is based on how important this part of
the input is when generating a given part of the output (such as a specific word in
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Figure 3.7 Simple example of message passing step for node 1, where the message function
is a sum of the hidden states of the nearest neighbors and the update function is the mean of
the message and the current hidden state

the translated sentence). For example, if the task consisted in translating the phrase
Il gatto ha sonno to English (The cat is sleepy ), the output word cat has a strong
correlation with its direct translation gatto, and it’s less dependent on the other words
in the input, so cat should have a high weight when paired to gatto.

In practice, this is done via a database of key-value pairs D = {(k1,v1), (k2,v2),
..., (kn,vn)} and a query q [97]. The model will calculate a score (or attention weight)
α between the query and each key ki in the database via a scoring function, and then
perform a pooling of the result via weighted average of the values vi corresponding
to each key (Figure 3.8).

Attention(q,D) =
n∑

i=1
α(q,ki)vi (3.15)

In the example above, a vector representation of cat would be the query and the vector
representations of each word in Il gatto ha sonno would be the keys and values. In
this case, key and value are related to the same word, but their vector representation
is not necessarily identical, for reasons of flexibility of the model. The weights need to
be differentiable in order to be learned, and it also adds interpretability to the model
if they are positive and sum up to 1, so it’s common to calculate them by passing a
scoring function a(q,ki) through a softmax function

α(q,ki) = softmax(a(q,ki)) = exp(a(q,ki))∑
j exp(a(q,kj))

. (3.16)
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This mechanism is known as soft attention, as opposed to hard attention, where the
weights are not differentiable and the gradient needs to be estimated via sampling.
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Figure 3.8 Schematic representation of the attention mechanism for one query. Adapted from
Figure 11.3.1 in reference [94]

Some examples of scoring functions are

• Scaled dot product

a(q,ki) = qTki√
d

, (3.17)

where d is the length of q and ki.

• Trainable weight matrix [98]

a(q,ki) = qTWki . (3.18)

• Additive attention [99]

a(q,ki) = wTtanh(W[q; ki]) , (3.19)

where q and ki are concatenated and passed through a single layer fully con-
nected neural network.

It is also possible to perform several attention pooling processes in parallel, with
independently learned scores, to allow the model to form different representations at
the same time. The results are then pooled by some operation like concatenation or
sum or mean. This method is known as Multi-head attention.

Another variation of the attention mechanism is the so-called Self-attention or Intra-
attention. In this case a representation of the input is created by computing the atten-
tion weights that relate different elements of the input to each other.
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4 Generative Models

Generative models are a group of machine learning models that aim at learning the
underlying distribution of available data or the construction principles of said data, in
order to create new realistic elements that follow the same distribution or construction
principles. These models have been applied in fields such as the generation of artifi-
cial images [100], text [101] and sound [102]. In computational chemistry, these mod-
els are valuable tools in the field of inverse design of novel materials and molecules
with desired properties [103, 104]. In particular, they can be valid alternatives to high-
throughput virtual screening and global optimization methods, because they allow the
exploration of an extremely large chemical space, with minimal selection bias from the
user [105, 106]. This approach has been adopted often in organic chemistry, because
the space of organic molecules with certain desired properties is potentially infinite.
The targeted generation of new materials can be done by implicitly learning features
from a targeted database [107], by optimizing properties in a latent space [108–110],
or by conditional generation.

In the field of inorganic materials, generative models need to face some additional
challenges: while organic molecules are mostly made of a few chemical species and
can be represented by strings such as SMILES [111] and SELFIES [112], or graph
representations with well defined bonds [113], inorganic solids could be formed from
almost any element in the periodic table, and have a crystalline structure that can’t be
inferred from the composition. Moreover, there is less availability and less diversity in
the training data. Together with the usual requirements for materials representations
in ML models, such as rotational and translational invariance and uniqueness, the
material’s representations for a generative model need to be invertible and possibly
take periodicity into account [114]. Some examples of such representations are:

• Composition vectors have the atomic number of each element as one entry of
the vector, and don’t include any structural information. It’s also possible to
represent one element with multiple entries, such as the row and group number
in the periodic table [115].

• Bag-of-atoms [116] also includes only the composition. Each compound is rep-
resented as a matrix that has all the possible elements as rows and the possible
stoichiometric coefficients as columns, filled with 1 in correspondence of each
(atom,stoichiometric coefficient) position and zero everywhere else (e.g SiO2

will have a 1 in the positions (H,0),(He,0),(Li,0),...,(O,2),...,(Si,1),... and 0 every-
where else).
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• Lattice parameters and element coordinates [117] such as in a poscar or cif file
include also information about the structure in real space. Additional information
about the momentum space can be added as well [118].

• 3D atomic density [119, 120] treats the structure as a three-dimensional grid of
voxels, as in a 3D image

• Graphs [121] where the nodes represent atoms and the edges represent bonds.

In this context, deep generative models based on neural networks, have proven to be
a very effective tool. Such models include Generative Adversarial Networks (GAN) [117,
122–126], Variational Autoencoders (VAE) [116, 118–120, 127–130], Recurrent Neu-
ral Networks (RNN), and Reinforcement Learning (RL) [131, 132].

4.1 Variational Autoencoder

Variational Autoencoders [133–135] are models that aim at learning the probability
distribution of the data to then sample from it. However, only discrete samples from
this distribution are available (i.e. the training set) and the full distribution is unknown.
To solve this problem, a neural network can be used to sample from a known (and
simpler) probability distribution, known as latent space, and learn how to map these
points to a data-like space. In a VAE this network is called decoder, and its paired
to a second neural network, the encoder, that learns how to map the initial training
set to the latent space (Figure 4.1). The training of a VAE proceeds as follows. First
the encoder Qθ (with trainable parameters θ) maps the training set samples xi to a
multivariate normal distribution with mean µ and variance σ2 in the latent space

qθ(z|xi) = N
(
µ(xi),σ2(xi)

)
. (4.1)

Mapping to a distribution instead of a single point allows to learn a more robust rep-
resentation and a smooth latent space without regions that can’t be decoded to valid
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representations. Then the decoder Pϕ (with trainable parameters ϕ) samples a point
zϵ from this distribution and tries to reconstruct the input xi. The weights and biases
of the two networks are trained to minimize the following cost function

J(xi|ϕ, θ) = (xi − Pϕ(zϵ))2︸ ︷︷ ︸
reconstruction

+λDKL (qθ(z|xi) || N (0, 1))︸ ︷︷ ︸
regularization

. (4.2)

The first term allows the decoder to learn how to accurately reconstruct the training
set, and it’s simply the mean squared error between input and decoded output. The
second term is a regularization term that drives the encoder to shape the latent space
as a standard gaussian distribution N (0, 1), and it’s mathematically expressed as the
Kullback-Leibler (KL) divergence between the encoder output and the target distribu-
tion. The minimum of the cost function is a trade-off between the two terms. If only
the the reconstruction term was to be minimized, the decoder would accurately repro-
duce the training set but would not be able to generalize and generate new samples.
Likewise, if only the regularization term was minimized, the decoder would not be
able to create many distinct samples, and resort instead to output an average of the
training set (a problem known as posterior collapse [136, 137]). The trade-off can be
controlled via the hyperparameter λ. After training, the decoder part of the network
can be used to sample from the latent space and generate new data

x̃ = Pϕ(z) . (4.3)

In the case of conditional generation[116, 138–142], a label is appended to the input
and then the same label is appended to the sampled elements that will be decoded.
In this way the label affects how the encoder shapes the latent space, and how the
decoder decodes the sample.

4.2 Generative Adversarial Network

The approach in a GAN [143] is similar to the VAE: a neural network, here called
generator Gθ, samples from a pre-defined probability distribution, maps the samples
to a data-like space and gets feedback form a second neural network to learn how to
generate realistic samples. However, the training procedure is different. In the case
of a GAN, the second neural network, the discriminator Dϕ, receives real samples
from the training set and fake samples from the generator, and tries to distinguish
them (Figure 4.2). The two networks are trained in an adversarial fashion, so the dis-
criminator must get better at distinguishing samples, while the generator must learn
how to create more and more realistic samples. When the discriminator is not able to
distinguish the two type of samples anymore, the training ends. At this point the fake
generated samples should look exactly like samples coming from the real data distri-
bution. However, the generator might resort to repropose always the same samples,
that are known to be effective into fooling the discriminator. This problem is known as
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mode-collapse [144–146], and has led to a series of different proposed cost functions
and modified NN architectures to improve the training stability. One example is the
Wasserstein GAN (WGAN) [147], where the discriminator outputs, instead of a simple
real/fake binary value, a scalar value that measures the quality of the sample. In this
case the discriminator is referred to as critic. The measure is the Wasserstein (also
known as earth-mover) distance between real and generated samples, and it can be
interpreted as the cost of moving along an optimal path the mass of one distribution to
match the other. Given that the critic can output any value in the interval (−∞,+∞),
it is often beneficial to restrict the rate at which the output can change between two in-
puts by either clipping the weights of the critic, or adding a gradient penalty (GP) [148].
Including the gradient penalty term, the cost function of the WGAN-GP is

JD(xi|ϕ, θ) = −Dϕ(xi)︸ ︷︷ ︸
real

+Dϕ(Gθ(zϵ))︸ ︷︷ ︸
fake

+λP (xi, Gθ(zϵ))︸ ︷︷ ︸
gradient penalty

.
(4.4)

4.3 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning model built to take a sequence of
decisions that affect an evolving system, with the objective of achieving a pre-defined
goal. Some examples of decision-making problems are the movement of robots [149],
and playing games [150, 151]. More precisely, in RL the decisions are called actions
and are taken by an agent that acts on an environment in a given state to maximize a
return, i.e. the sum of the rewards that it receives after each action. After the action,
the environment will transition to a new state. The specific form of the reward function
is defined by the user, and depends on the application. The key feature of RL is that
an action is affected by the actions previously taken by the model. This differs from
most of the other deep learning models, where the prediction on some test data do
not affect the predictions on other data successively presented to the model. Here
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we denote the state at time t as st ∈ S, an action as at ∈ A, and the reward as
rt = r(st, at). The return R is often calculated as a weighted sum of the rewards,
where the weight is a discount factor γ that damps the values of the rewards the
farther they are in time.

R = r0 + γr1 + γ2r2 + ... =
∞∑

t=0
γtrt (4.5)

A high discount factor enables the exploration of the space by taking long sequences
of actions, while a small value favors short sequences of actions. The agent is trained
to take the best sequence of actions (i.e. the best trajectory ) to maximize R. The
probability of taking an action a given a state s is called a (stochastic) policy π(a|s),
with

∑
a π(a|s) = 1 for any state s. A deterministic policy is a special case of policy

where only one action has a probability of 1 and all the others are 0. In practice,
the policy corresponds to the algorithm that the agent uses to make decisions. RL
problems normally rely on the assumption that the system is a Markov system, i.e.
that the next state st+1 only depends on the current state st and the action at. For a
given policy π and an initial state s0, we can define the action-value function

Qπ(s0, a0) = r(s0, a0) + Eat∼π(at|st)

[ ∞∑
t=1

γtrt

]
(4.6)

as the reward for the first action plus the return averaged over all the possible future
trajectories taken from s0 according to π. The optimal policy π∗ is the one that finds
the maximum action-value function Q∗. Equation 4.6 can be also written in recursive
form

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)
∑

a′∈A

π(a′|s′)Qπ(s′, a′) (4.7)

for all the states s and actions a. Here the successive action-value functions are
weighted by the policy, i.e. by the probability of taking action a′ given the state s′ and
by the transition rate P , i.e. the probability of reaching state s′ given an initial state
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s and an action a. P in most of the applications is not known a priori, but it’s only
accessible via sampling. One possible strategy to find an approximate Q∗ without
knowing P consists in choosing a policy πe and using it to collect n trajectories with T
time steps each, and minimize the loss function

J(Q) = 1
nT

n∑
i=1

T −1∑
t=0

[
Q(si

t, a
i
t)− r(si

t, a
i
t)− γmax

a′
Q(si

t+1, a
′)
]2

. (4.8)

This approach is known as Q-learning. J(Q) can be minimized via gradient descent
to update Q in the following way

Q(si
t, a

i
t)← Q(si

t, a
i
t)− η∇QJ(Q) (4.9)

The solution will converge to a value Q̂ that approximates the optimal Q∗, as well as
an approximate optimal policy π̂ = arg maxa Q̂(s, a). The initial choice of policy πe is
crucial to get samples that approximate well P . A simple choice could be

πe(a|s) =

arg max
a′

Q̂(s, a′), with probability p

uniform(A), with probability 1− p
(4.10)

This policy chooses the optimal action according to the current estimate Q̂ with (user-
defined) probability p and explores the environment by randomly sampling from all the
possible actions in the other cases. Another example is the softmax exploration policy

πe(a|s) = exp (βQ̂(s, a))∑
a′ exp (βQ̂(s, a′)/T )

(4.11)

The hyperparameter β again controls how likely is the model to choose the optimal
action (high β) or sample actions randomly (β = 0). When a neural network is used
to estimate Q, the method is known as Deep Q-learning.
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5 ML-based Screening of Halide
Double Perovskites for Photovoltaic
Applications

5.1 Motivation

The chemical space spanned by charge balanced double perovskites includes thou-
sands of compositions, and many among those might have favorable optoelectronic
properties. However, exploring this large space solely by DFT methods is computa-
tionally expensive, especially because this class of materials often can be accurately
described only by hybrid functionals and including spin-orbit coupling effects [55].
High-throughput screening studies have been performed in the past [72, 73, 75, 77,
79, 81], but have been limited to only a fraction of the full chemical space. These
studies employed DFT at GGA or hybrid level to compute compounds properties and
their stability. Other works studied larger spaces of up to a few thousand double per-
ovskites [82, 83], but employed geometric factors such as the Goldschmidt tolerance
factor t, the octahedral factor µ or modified versions of those [48] to reduce the search
space before the DFT calculations.

To allow the exploration of a larger chemical space, several groups employed ma-
chine learning-based methods to filter candidate materials. Among these, Schmidt
et al. [152] first generated a database of almost 250,000 cubic perovskites calcu-
lated via DFT+U (641 of which were stable and 1562 with a gap above 0.5 eV), and
then benchmarked the performance of several ML models (ridge regression, neural
networks, random forest, and extremely randomized trees) on the prediction of the en-
ergy above hull . The most accurate method was found to be extremely randomized
trees. Saidi et al. [153] used a hierarchical convolutional neural network to predict
the lattice constant, octahedral angle and band gap of hybrid metal halide perovskites
ABX3, focusing on the effect of the organic cation A. Li et al. [154] pre-trained several
ML models (Gradient Boosted Regression Tree (GBRT), Kernel Ridge Regression
(KRR), support vector regression, bootstrap aggregating regression, Gaussian Pro-
cess Regression (GPR) and random forest) on the formation energy of 1593 oxide
single perovskites and used it to improve the prediction of the band gap. The lowest
mean absolute error of 0.384 eV was achieved by the GPR model. Pilania et al. [155]
applied KRR to predict the band gap of oxide double perovskites of the type AA’BB’O6,
starting from a database of 1306 DFT band gaps calculated with the GLLB-SC func-
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tional [156]. An initial set of 16 elemental features and 16 LASSO-based [157] com-
pound features were used to build descriptors to be tested via a Linear Least Square
Fit (LLSF). The best-performing ones were used as input of the KRR model, with a
final Root Mean Squared Error (RMSE) of 0.36 eV. Agiorgousis et al. [158] trained a
random forest algorithm on the band gaps of chalcogenide double perovskites calcu-
lated via hybrid DFT using the HSE06 functional to identify promising solar absorbers.
The stability of the selected compounds was evaluated by combining information from
the Goldschmidt tolerance factor, the decomposition energy and molecular dynamics
(MD) simulations. For the stable compounds, optical absorption was calculated, lead-
ing to the discovery of 5 promising sulfide double perovskites. In the field of halide
double perovskites, Im et al. [159] trained a GBRT on PBE gaps of 540 structures, and
predicted the formation energy and the band gap with a RMSE of 0.021 eV/atom and
0.223 eV respectively. Yang et al. [160] compared the performance of GBRT, ridge
regression, support vector regression, KRR, a bagging ensemble algorithm, and a
random forest ensemble algorithm and chose GBRT to explore an initial space of
16400 double perovskites. Konno [161] employed a convolutional neural network to
extract elemental features from the position of the atoms in the periodic table. The
CNN was trained and tested on 3734 experimental band gaps and predicted band
gaps with a RMSE of 0.42 eV. This kind of Periodic Table Representation (PTR) al-
lows to learn basic elemental properties and how they vary across the periodic table
by just using the spatial arrangement of the atoms, as if they were pixels in an image.
This has shown to be very useful situations where the elemental composition has the
largest influence on the target property, as in the case of Heusler compounds [162]
or, as in our case, double perovskites [163]. The advantage of the PTR is that no
additional feature extraction procedure is necessary.

Here we use a CNN on the same kind of periodic table representation to sample a
space of 7056 double perovskites ABC2D6 with 2 alkali metals in the position C, 44
metals in the position A/B and 4 halides in the position D (Figure 5.1). The focus is
set on properties relevant for photovoltaic applications, such as the thermodynamic
stability of the materials, their power conversion efficiency and the effective masses
of their charge carriers.

5.2 Machine Learning Model

The input for the CNN is a tensor with 3 channels, one for each of the C, A/B, and D
sites. Each channel is a grid in the shape of a periodic table with the stoichiometric
coefficient (2 for C, 1 for A and B and 6 for D) in correspondence of the four elements,
and zero everywhere else.

The neural network (cf. Table 5.1) has 5 convolutional layers with four 2x2 kernels
and one 1x2 kernel, and 4 fully connected layers. Each layer has LeakyReLU [164]
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• C: Cs, Rb

• A/B: Ag, Al, As, Au, B, Ba,
Be, Bi, Ca, Cd, Co, Cr, Cu,
Fe, Ga, Ge. Hg, In, Ir, K, Li,
Mg, Mn, Mo, Na, Nb, Ni, Pb,
Pd, Pt, Rb, Rh, Ru, Sb, Sc,
Sn, Sr, Ta, Ti, Tl, V, Y, Zn

• D: Br, Cl, F, I

Figure 5.1 Elements on the lattice sites C, A/B and D
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Figure 5.2 Periodic table representation with a 2x2 kernel, separated in 3 channels for A/B,
C, and D.

as activation function, with a negative slope of 0.2. The fully connected layers include
layer normalization [165] and dropout [166] with a probability of 0.25. The network was
trained using the Adam optimizer [167] on batches of 100 samples for 1000 training
set iterations, with a learning rate of 0.001, a weight decay of 0.0005 and cosine
annealing [168] as learning rate scheduler. The hyperparameters were chosen in
order to minimize the loss between predicted and calculated band gap values on the
test set.

The training and test sets include 764 and 200 structures, respectively, calculated
by DFT using the FHI-aims code [169]. We used the HSE06 [170, 171] exchange-
correlation functional, a (4x4x4) k-point grid, an energy convergence threshold of 10−6

eV and a density convergence threshold of 10−6 e/a3
0, where a0 is a Bohr radius. We

use the numeric atom-centered light basis sets as implemented in FHI-aims [169]. For
most computations, the geometry was optimized in a symmetry-preserving frame-
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Convolutional layers
Kernel Channels Activation Dropout Norm

2x2 3,100 LeakyReLU(0.2) 0.25 -
2x2 100,100 LeakyReLU(0.2) 0.25 -
2x2 100,100 LeakyReLU(0.2) 0.25 -
2x2 100,100 LeakyReLU(0.2) 0.25 -
1x2 100,100 LeakyReLU(0.2) 0.25 -

Fully connected layers
Nodes Activation Dropout Norm

1200,200 LeakyReLU(0.2) 0.25 layer
200,200 LeakyReLU(0.2) 0.25 layer
200,200 LeakyReLU(0.2) 0.25 layer
200,1 LeakyReLU(0.2) 0.25 layer

Table 5.1 Network architecture

work, with a covergence threshold for the forces of 10−2 eV/Å. The calculations in-
clude a non-self-consistent spin-orbit coupling correction [172] and collinear treatment
of the spin, which was initialized following the configuration of isolated atoms. In the
structures containing two metals with unpaired electrons, the two spins were initialized
in a antiparallel configuration.

For the structures with a predicted band gap between 0.9 and 1.6 eV, the the ther-
modynamic stability was estimated by calculating the enthalpy of the decomposition
reaction [173]. For the stable compounds the absorption coefficient was calculated us-
ing the random phase approximation on an increased k-point grid density of (8x8x8)
and a gaussian broadening of 0.05 eV. From this, the Spectroscopic Limited Maxi-
mum Efficiency (SLME) was calculated to estimate the maximum theoretical power
conversion efficiency, following a method proposed by Yu and Zunger [174]. Addition-
ally, the effective mass was calculated by parabolic fit of the band edges along the
high symmetry directions.

5.3 Spectroscopic Limited Maximum Efficiency

In first approximation the efficiency of a solar cell can be calculated from the Schockley-
Queisser (SQ) model, which considers an ideal solar absorber that has a step function
as absorptivity, with a value of 1 above the band gap (perfect absorption) and 0 below
the gap (no absorption at all). If we assume that every absorbed photon generates
one electron-hole pair, then the short-circuit current density JSC , i.e. the current that
flows through the cell at zero voltage, can be calculated as

JSC = e
∫ ∞

EG

ϕsun(E)dE . (5.1)
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Here ϕsun(E) indicates the photon flux of the Sun per unit energy. Additionally, the
cell will emit radiation with a spectrum that resembles that of a black body at the
temperature of the cell. This generates a dark current density J0

J0 = eπ
∫ ∞

EG

ϕblackbody(E, Tcell)dE . (5.2)

Overall, considering only the losses due to the photons below the gap and the radia-
tive recombination, the current density J under illumination will be

J = JSC − J0

[
exp

(
eV

kBT

)
− 1

]
. (5.3)

The maximum efficiency η obtained by such device is the ratio between the maximum
of the cell power density J · V and the incoming power density of the Sun

η = PMAX

PIN

= max(J · V )∫∞
0 Eϕsun(E)dE (5.4)

This shows that the optimum gap for a perfect absorber whould be 1.34 eV, leading

Figure 5.3 Irradiance of a standard solar spectrum [175] and power conversion efficiency
calculated using the Schockely-Queisser model. The maximum of PCE is at 1.34 eV. The
data for the solar spectrum are publicly available free of charge under the following conditions:
https://www.nrel.gov/disclaimer.html.

to an efficiency of 34%. A second approximation to approach more realistic values
consists in including the absorptivityA of the material instead of a step function. In this
case JSC can be calculated by integrating over the solar spectrum from 0 to infinity, but
with A as weighting factor. This could be already a good approximation for a direct

https://www.nrel.gov/disclaimer.html
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(a) direct allowed (b) direct forbidden (c) indirect

Figure 5.4 Three types of semiconductors based on the nature of their band gap: (a) direct
gap with dipole-allowed transition, (b) direct gap with dipole-forbidden transition, and (c) indi-
rect gap

gap semiconductor, however for the majority of the materials there are more loss
mechanisms to take into account. Figure 5.4 shows different types of semiconductors
based on the nature of their band gap. Figure 5.4a corresponds to a material with
a direct band gap, and a dipole allowed (DA) transition in correspondence of EG.
This is the situation that is most similar to the ideal case. Figure 5.4b is a direct gap
semiconductor, but the first dipole-allowed transition happens at an energy higher than
the band gap. This means that part of the energy absorbed will be released when the
excited carriers relax to the band edge, and will not contribute to the power that can
be produced by the device. The last case is an indirect gap semiconductor, and also
in this case the first direct dipole-allowed transition will happen at a higher energy, and
lead to some losses. Following an approach suggested by Yu and Zunger [174], these
losses can be modeled as a Boltzmann factor fr = exp

(
−EDA−EG

kBT

)
, that decays when

the first dipole-allowed transition is very far from the energy gap EG. This is based
on the assumption that electron concentrations at the different energy levels follow a
Boltzmann statistic and are the only factor that determines the ratio of radiative to non-
radiative recombination. A different method proposed by Blank et al. [176] includes the
non-radiative recombination in the model by introducing as a parameter the internal
photoluminescence quantum yield (Qi). Qi is the number of carriers collected at the
cell divided by the number of photons that are actually absorbed by the cell, so it’s
corrected for the losses due to reflection.
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With the inclusion of this factor, the current density follows

JSC = e
∫ ∞

0
A(E)ϕsun(E)dE

J0 = eπ

fr

∫ ∞

0
A(E)ϕblackbody(E)dE

J = JSC − J0

[
exp

(
eV

kBT

)
− 1

] (5.5)

and the efficiency can be calculated as in Equation 5.4. In this case the power con-
version efficiency is known as Spectroscopic Limited Maximum Efficiency (SLME).
The absorptivity can be calculated from the absorption coefficient α and a simple
exponential decay.

A(E) = 1− exp (−2α(E)L) (5.6)

The absorption coefficient for the component i (x,y, or z) αi can be obtain from
Kohn-Sham states from

αi = 8π2

ωVcell

∑
c,v

∑
k
|pi;c,v,k|2δ(ϵv,k − ϵc,k − ω)dk , (5.7)

where p indicates the momentum. When the transition is symmetry-forbidden, these
matrix elements will be zero.

5.4 Results

The result of the training on a randomly sampled set of 200 structures is shown in
Figure 5.5. With the exception of some outliers the model can predict the band gap
with a reasonable accuracy and an overall MAE of 0.21 eV and RMSE of 0.45 eV.
The RMSE here is higher than the MAE because it is more sensitive to the presence
of outliers. The machine learning model is then used to select candidates with a pre-
dicted band gap between 0.9 and 1.6 eV. From this set of 459 structures, first those
that contain toxic elements have been excluded. Subsequently, the band gap of the
remaining 303 structures was explicitly computed at the hybrid DFT level (unless they
were already contained in the initial training or test set for the ML model). For the 119
compounds with a DFT band gap included in the same interval, the decomposition
enthalpy has been calculated (cf. Figure 5.6). For a compound to be stable the de-
composition enthalpy must be positive, but given the finite accuracy of the employed
approximate DFT functional and the fact that the DFT calculations don’t include any
temperature effect, also the structures with a decomposition enthalpy between -50
and 0 meV/atom have been included in the successive analysis - as candidates po-
tentially stable at room temperature or metastable. As it has been shown by Sun et
al. [177], metastable compounds are often found in this energy interval.
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Figure 5.5 Training result on a test set of 200 structures

The maximum theoretical power conversion efficiency of the 12 stable and 17
metastable candidates thus identified was calculated for a layer thickness up to 5
µm (see Figure 5.7).

The results are summarized in Table 5.2.
Efficiencies above 20% were found for compounds with a dipole-allowed transition

in correspondence with their direct or quasi-direct band gap. This is the case for GeS-
nCs2Cl6 which has a direct gap of 1.41 eV and and efficiency of 28%, for GeSnCs2Br6,
which has a direct gap of 0.95 eV and an efficiency of 23%, and for CrInRb2I6, with
a direct gap at 0.97 eV and a transition at 1.00 eV. GeSnCs2Cl6 and GeSnCs2Br6

also show optimal charge transport properties due to their low and balanced carrier
effective masses (-0.13m0 and 0.20m0 for GeSnCs2Cl6, -0.09m0 and 0.14m0 for GeS-
nCs2Br6, in units of electron masses m0 for holes and electrons, respectively).

CrInRb2I6 has heavier and anisotropic effective masses, but still comparable to that
of AgBiCs2Br6. Also some materials with indirect gap show a high efficiency, namely
AlLiCs2I6, CuInCs2Cl6, AgInCs2Br6,CrGaRb2I6 and CrGaCs2I6. However these com-
pounds have negative decomposition enthalpy and might not be stable at room tem-
perature. Additionally, their bands are definitely narrower.

Among the structures with positive decomposition enthalpy , the highest efficiency
(17%) was found for CrScCs2I6, with an indirect gap of 1.37 eV and absorption energy
of 1.88 eV. The carriers effective masses are of the order of 0.5 m0, except for holes
along the L-Γ direction, were m∗

h is -0.87m0.
Finally non symmetry-constrained relaxations show that with a threshold of 0.1 Å

the majority of the structures retains the initial cubic spacegroup Fm-3m with the
exception of 4 tetragonal structures, namely AgIrRb2Br6 (I4), CuInCs2Cl6 (I4/mmm),
CuFeRb2Cl6 (I4/mmm) and CuRuRb2F6 (I4/mmm), one monoclinic structure, FeR-
bCs2I6 (C2/m), and one triclinic, AuMoRb2Br6 (P-1).
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Figure 5.6 Enthaply of the decomposition reaction as a function of DFT band gap. The com-
pounds with ∆HD>0 meV/atom are stable, while those included between the vertical lines
(from -50 to 0 meV/atom) are assumed to be metastable (see text)

Due to this second relaxation, the decomposition enthalpy of AgInRb2Br6 reaches
-0.7 meV/atom and a power conversion efficiency of 17%.

5.5 Conclusions

In this project, we screened a large chemical space (7056 compounds) of inorganic
halide double perovskites to uncover suitable candidates for photovoltaic applications.
We applied a funnel-type approach to identify a pool of potential candidates and
then reduce it by successively performing more demanding calculations based on
band gap, thermodynamic stability, power conversion efficiency and carrier effective
masses. Thereby we employed a state-of-the-art ML approach as a first step to limit
the number of expensive band-structure calculations to just the 964 compounds used
in training and testing the ML model. This is based on a neural network architecture
composed of convolutional and fully connected layers with a periodic table represen-
tation of the perovskites. This approach yielded a high accuracy for the prediction
of band gaps versus DFT results. The latter were all computed using high accuracy
hybrid DFT including spin-orbit coupling in order to ensure high predictivity of our re-
sults. We find a number of very high performing compounds—with efficiencies as
high as 28% and very low carrier effective masses (-0.13m0 for holes and 0.20m0 for
electrons) for GeSnCs2Cl6. Unfortunately, our calculations show that such high per-
forming compounds might only be meta-stable. Among the compounds predicted to
be thermodynamically stable, we still find some with efficiencies of up to 17% (Ag-
InRb2Br6) albeit with worse and more anisotropic effective masses. Notably, when
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Figure 5.7 SLME for stable (left) and metastable (right) structures. The efficiency of Ag-
BiCs2Br6 is shown for comparison

relaxing the strict requirement of cubic symmetry, we find 6 compounds to achieve
higher stabilities at lower symmetries.

Thus, while we do find a few novel materials, trade-offs between power conver-
sion efficiency, carrier mobility and (meta-)stability may indeed be unavoidable for this
materials class.
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Structure ∆HD (meV/at) Egap (eV) Eabs (eV) SLME (%) m∗
h (m0) m∗

e (m0)
AgIrRb2Br6 -48 1.30 2.03 6 -1.71 (X-Γ) -3.81 (X-W) 0.34 (X-Γ) 0.31 (X-W)
CrNaCs2I6 -46 0.99 2.20 0 -1.88 (Γ-X) -0.95 (Γ-L) 0.49 (X-Γ) 0.52 (X-W)

AgFeRb2Br6 -45 1.09 2.31 0 -0.38 (Γ-X) -0.52 (Γ-L) 0.56 (X-Γ) 0.46 (X-W)
AlLiCs2I6 -44 1.31 1.67 20 -0.81 (Γ-X) -1.24 (Γ-L) 0.28 (Γ-X) 0.28 (Γ-L)
CrInRb2I6 -43 0.97 1.00 24 -0.42 (L-Γ) -0.14 (L-W) 0.65 (L-Γ) 0.19 (L-W)

CuInCs2Cl6 -38 1.36 1.65 19 * (Γ-X) -1.06 (Γ-L) 0.27 (Γ-X) 0.27 (Γ-L)
AgInCs2Br6 -36 1.27 1.61 20 -5.62 (Γ-X) -0.71 (Γ-L) 0.20 (Γ-X) 0.20 (Γ-L)

AgRhRb2Br6 -36 1.49 2.67 2 -1.06 (L-Γ) -0.69 (L-W) 0.36 (X-Γ) 0.30 (X-W)
CrGaRb2I6 -35 1.19 1.49 20 -1.26 (Γ-X) -0.86 (Γ-L) 0.66 (L-Γ) 0.26 (L-W)

AuMoRb2Br6 -35 1.26 2.15 4 * *
CrInCs2I6 -29 1.03 1.38 11 -0.45 (L-Γ) -0.15 (L-Γ) 0.66 (L-W) 0.21 (L-W)

GeSnCs2Cl6 -28 1.41 1.41 28 -0.13 (Γ-X) -0.13 (Γ-L) 0.20 (Γ-X) 0.20 (Γ-L)
GeSnCs2Br6 -27 0.95 0.95 23 -0.09 (Γ-X) -0.09 (Γ-L) 0.14 (Γ-X) 0.14 (Γ-L)

CrGaCs2I6 -26 1.19 1.49 20 -1.22 (Γ-X) -0.88 (Γ-L) 0.67 (L-Γ) 0.27 (L-W)
FeRhRb2Cl6 -9 0.99 1.58 9 -0.39 (L-Γ) -0.36 (L-W) 1.80 (X-Γ) 0.59 (X-W)
FeInRb2Cl6 -4 1.19 1.73 15 -0.29 (X-Γ) -1.35 (X-W) 27.30 (L-Γ) 8.31 (L-W)
AgInRb2Br6 -2 1.23 1.58 17 -7.39 (Γ-X) -0.66 (Γ-L) 0.20 (Γ-X) 0.20 (Γ-L)
CuRuRb2F6 6 0.99 1.44 9 -1.15 (Γ-X) -1.59 (Γ-L) 15.00 (L-Γ) 7.60 (L-W)
CuFeRb2Cl6 18 1.26 2.05 7 * (Γ-X) -0.79 (Γ-L) 0.78 (X-Γ) 0.62 (X-W)

NiSnRb2I6 42 0.92 1.96 0 -0.20 (X-Γ) -0.99 (X-W) 0.80 (L-Γ) 0.40 (L-W)
CaNiRb2I6 44 1.47 2.33 8 -1.20 (Γ-X) -0.85 (Γ-L) 0.69 (X-Γ) 0.92 (X-W)
NiSnCs2I6 44 0.96 1.93 0 -0.21 (X-Γ) -1.09 (X-W) 0.82 (L-Γ) 0.40 (L-W)

NiSnRb2Br6 65 1.56 2.72 2 -0.22 (X-Γ) -1.18 (X-W) 0.99 (L-Γ) 0.50 (L-W)
FeKRb2I6 76 1.13 2.13 1 -0.17 (Γ-X) -1.14 (Γ-L) 0.55 (X-Γ) 0.80 (X-W)

CrScCs2I6 77 1.37 1.88 17 -0.87 (L-Γ) -0.55 (L-W) 0.54 (X-Γ) 0.46 (X-W)
FeRbCs2I6 87 1.24 2.13 5 -1.97 (Γ-X) -1.46 (Γ-L) 8.25 (X-Γ) 1.17 (X-W)

FeKCs2I6 100 1.14 2.10 2 -1.56 (Γ-X) -1.21 (Γ-L) 5.72 (X-Γ) 1.63 (X-W)
MnNbCs2I6 246 1.36 2.16 8 * *
GeMnCs2I6 322 1.31 2.43 6 -0.22 (X-Γ) -0.87 (X-W) 0.27 (L-Γ) 0.20 (L-W)

Table 5.2 Decomposition enthalpy, DFT band gap, absorption energy, spectroscopic limited
maximum power conversion efficiency at 5µm and carrier effective masses of the identified
metastable and stable compounds, after symmetry constrained geometry optimization. Miss-
ing values (*) are due to one or both band edges having bands too narrow to calculate the
curvature.



52

Structure ∆HD Egap Eabs SLME Spacegroup
(meV/atom) (eV) (eV) (%) symbol

AgIrRb2Br6 -32 1.95 2.43 15 I4
CrNaCs2I6 -44 0.99 1.63 8 Fm-3m

AgFeRb2Br6 -43 1.04 2.31 0 Fm-3m
AlLiCs2I6 -42 1.30 1.67 20 Fm-3m
CrInRb2I6 -42 0.91 0.93 23 Fm-3m

CuInCs2Cl6 -28 2.21 2.54 12 I4/mmm
AgInCs2Br6 -34 1.22 1.58 18 Fm-3m

AgRhRb2Br6 -33 1.45 2.27 8 Fm-3m
CrGaRb2I6 -34 1.19 1.47 19 Fm-3m

AuMoRb2Br6 6 2.69 3.27 4 P-1
CrInCs2I6 -28 0.97 1.00 24 Fm-3m

GeSnCs2Cl6 -27 1.35 1.35 27 Fm-3m
GeSnCs2Br6 -26 0.89 0.90 21 Fm-3m

CrGaCs2I6 -24 1.21 1.48 21 Fm-3m
FeRhRb2Cl6 -8 0.93 1.54 10 Fm-3m
AgInRb2Br6 -0.7 1.20 1.57 17 Fm-3m
FeInRb2Cl6 -4 1.06 1.61 14 Fm-3m
CuRuRb2F6 7 0.91 1.40 6 I4/mmm
CuFeRb2Cl6 19 1.13 2.10 4 I4/mmm

NiSnRb2I6 43 0.87 1.97 0 Fm-3m
CaNiRb2I6 44 1.48 2.35 8 Fm-3m
NiSnCs2I6 45 0.92 1.94 0 Fm-3m

NiSnRb2Br6 66 1.51 2.72 1 Fm-3m
FeKRb2I6 77 1.13 2.15 1 Fm-3m

CrScCs2I6 79 1.37 1.88 17 Fm-3m
FeRbCs2I6 105 1.40 2.13 11 C2/m

FeKCs2I6 102 1.14 2.13 2 Fm-3m
MnNbCs2I6 248 1.41 2.17 9 Fm-3m
GeMnCs2I6 323 1.29 2.43 6 Fm-3m

Table 5.3 Decomposition enthalpy, DFT band gap, absorption energy, spectroscopic limited
maximum power conversion efficiency at 5µm of the metastable and stable compounds, after
non symmetry constrained geometry optimization
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6 Interpretable Band Gap Prediction
of Double Perovskites

6.1 Motivation

The direct mapping of materials compositions to properties via high throughput virtual
screening or machine learning methods has proven to be very effective for materials
discovery applications. However, machine learning methods often lack interpretabil-
ity, especially in the case of neural networks, where many parameters are needed but
the parameters themselves do not provide physically relevant information on how a
compound is related to its corresponding property. In this regard, empirical and semi-
empirical methods have been used to gain insight in the material-property relation in
fields such as semiconductors, electrochemistry and catalysis. One example in the
context of band gap prediction of semiconductors is the Solid State Energy (SSE)
scale developed by Pelatt et al. [178]. In this study, experimental values of ionization
potentials and band gaps of 69 closed-shell binary compounds where used to define
the position of atomic energy levels in a solid, similarly to standard reduction poten-
tials in a solution of electrochemistry. The SSE of an element is then defined as the
average electron affinity (for a cation) or average ionization potential (for an anion) of
all the compounds containing said element. The electron affinities where calculated
as the difference between ionization energy and energy gap. The trend of ioniza-
tion potentials and electron affinities shows that these value converge around 4.5 eV
below the vacuum level, which is the same value as the hydrogen donor/acceptor ion-
ization energy ε(+/−) [179], so that elements with SSE above ε(+/−) will behave as
cations and elements below will behave as anions. The SSE scale initially included 40
elements, and was successively extended to include 94 elements in different oxida-
tion states [180]. A following study by Davies et al. [181] used this model to estimate
the band gap of inorganic materials as

ESSE
gap = SSEcation − SSEanion (6.1)

for binary compounds, and as

ESSE
gap = min(SSEcations)−max(SSEanions) (6.2)

for materials with more than two elements. This method was tested on 35 ternary
semiconductors and leads to a root mean squared error of 0.66 eV.



54

−2.5 0.0 2.5 5.0 7.5 10.0 12.5
DFT band gap (eV)

−2

0

2

4

6

8

10

12
S

S
E

ba
nd

ga
p

(e
V

)
Initial
Fit

Figure 6.1 Band gap calculated from SSE values. The initial values tabulated in refer-
ence [178] were fitted again on data from the materials project to adjust for DFT-calculated
band gaps

Following this example, we estimated the band gap of double perovskites from SSE
values. Then, to allow more flexibility, we adopted a model to predict two electronic
energy levels per element (one in the valence band and one in the conduction band)
and calculated the band gaps from these. To add to the explainability of the model,
we adopt a neural network architecture based on the model Roost (Representation
learning from stoichiometry) [182], a message passing neural network with a soft
self-attention mechanism. The self-attention assigns a weight to pair-wise element
interactions and highlights which interactions have a higher contribution to the final
property. This kind mechanism has been adopted also in similar architectures such
as CrabNet [183], Finder [184] and other Transformer-based models [185].

6.2 Solid State Energy of Double Perovskites

Following the work of Davies et al. [181], we calculated the band gap of double per-
ovskites from the Materials Project Database [186–190] using the SSE experimental
values from reference [178] as initial values. Because of the 4 lattice sites in the struc-
ture ABC2D6, we chose the lowest among the cations SSE and the highest among the
anions SSE (6.2). To correct for the difference between experimental values used in
the original SSE values and the PBE band gaps of the Materials Project, we fitted
again the values using gradient descent (Figure 6.1). Because of the use of only two
values, the model can only predict one band gap value for all the structures that have
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Figure 6.2 Element distribution in the training set normalized by site and band gap distribution

the same two elements with lowest (for cations) and highest (for anions) SSE. More-
over, the solid state energy is defined only as one value per element, and allows only
a very simple description of the band gap.

6.3 Materials Representation and Model Architecture

To get a more complex picture of the effect of each element on the band gap, we
adopted a message passing neural network trained on a dataset of 1941 cubic dou-
ble perovskites with chemical formula ABC2D6 from the Materials Project Database,
with their respective DFT band gaps. This set was divided in 1500/220/221 randomly
sampled structures for training/validation test sets. The input structures are repre-
sented as 4 one-hot encoded vectors, one for each of the 4 sites. Also in this case the
training set was expanded to include all the permutations BAC2D6, yielding a total of
3000 structures. The element distribution in the training set, normalized by site, and
the band gap distribution are shown in Figure 6.2 The neural network architecture is
represented in Figure 6.3, for a binary compound AB with two one-hot encoded input
vectors.

The forward pass proceeds as follows:

1) The one-hot encoded atomic feature vectors are embedded into a to 63-dimensional
space.

2) The fractional weight of each atom is appended to the corresponding feature
vector as 64th dimension.

3) The 64-dimensional feature vectors are concatenated to form all the 16 pairs of
the type A-A, A-B, A-C, A-D, B-A, B-B, ..., D-A, ..., D-D.
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4a) The 128-dimensional pairs are passed through a single hidden layer neural net-
work with a one-dimensional output, and successively through a weighted soft-
max function, with weights corresponding to the fractional weights of the ele-
ments in the structure, to obtain normalized attention weights.

4b) The 128-dimensional pairs obtained at step 3 are passed through a second
single hidden layer neural network with a 64-dimensional output.

5) The feature vectors obtained in step 4b are multiplied to the corresponding at-
tention weights obtained at point 4a, to form weighted feature vectors.

6) The steps 4a, 4b, and 5 are repeated three times in parallel (i.e. three attention
heads) and the results are averaged, then summed over the first element of the
pair.

7) The new 64-dimensional atomic feature vector is added to the previous one (step
2) and then steps 3-7 are repeated three times (three message passing layers).

8) Two independent linear layers are used to predict two energy levels per atom,
one in the valence band and one in the conduction band.

9) The valence band maximum and conduction band minimum are calculated as
weighted sums of the individual levels, with weights from a softmax function.
In this way the highest contribution to the position of the band edges comes
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Figure 6.4 Reference values used for training the network

from the atom with the highest among the occupied levels and the atom with the
lowest among the unoccupied levels, with an exponentially decreasing weight
from the other atoms.

10) The gap is calculated from the difference of the band edges.

Egap =
Natoms∑

i

wiLUMOi −
Natoms∑

i

wiHOMOi (6.3)

All the single hidden layer neural networks in the model have 250 nodes and a
LeakyReLU activation function, with a negative slope of 0.2. The architecture and hy-
perparameters were the same adopted in the Roost model [182], however the model
was trained for 1000 training set iterations, to minimize the error the validation set.

To establish an initial ordering of the atomic energy levels we set as reference the
atomic energies from Desclaux [191], using their most common oxidation state in the
dataset. Because the empty s states of the anions were not available, these values
were initialized as 0, and assumed to give a negligible contribution to the calculation
of the gap. Here we will refer to the highest occupied and lowest unoccupied atomic
energy levels as HOMO and LUMO, respectively. The reference values are shown in
Figure 6.4. The loss function to train the network includes two terms: the first is the
mean squared error between the predicted gap and the corresponding training value,
the second term is a penalty term that keeps the predicted energy levels close to their
corresponding reference

J =
(
Egap − Etrain

gap

)2

+ λ

[
Natoms∑

i

(
LUMOi − LUMOref

i

)2

+
Natoms∑

i

(
HOMOi − HOMOref

i

)2
] (6.4)

To establish the weight λ of the penalty term, we compared the results of the fit on
the same model trained with and without prior. Figure 6.5 shows that introducing a
prior does not significantly reduce the model performance. The chosen value for λ
was therefore 0.001. Figure 6.6 shows the result of the band gap fit on a test set of
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Figure 6.6 Model fit on a test set of 221 structures, without prior (left) and with a penalty
weight of 0.001 (right)



59

Li Be B C N O F NeNaMgAl Si P S Cl Ar K CaSc Ti V CrMnFeCoNiCuZnGaGeAsSeBr KrRbSr Y ZrNbMoTcRuRhPdAgCd In SnSbTe I XeCsBaLaLu Hf Ta WReOs Ir PtAuHg Tl Pb Bi Po AtRn
−10

−5

0

5

10

E
ne

rg
y

(e
V

)

LUMO
HOMO

Li Be B C N O F NeNaMgAl Si P S Cl Ar K CaSc Ti V CrMnFeCoNiCuZnGaGeAsSeBr KrRbSr Y ZrNbMoTcRuRhPdAgCd In SnSbTe I XeCsBaLaLu Hf Ta WReOs Ir PtAuHg Tl Pb Bi Po AtRn
0

20

40

60

E
ne

rg
y(

eV
)

∆LUMO
∆HOMOFigure 6.7 Predicted HOMO and LUMO values for a madel trained without prior, averaged

over different structures, with standard deviation as error bar.

221 structures for a λ value of 0.001. In the following the parameters of the network
will be analyzed, first for the model trained without initial references, the for the model
with prior.

6.4 Training Without Prior

The average predicted values for HOMO and LUMO of each element are shown in
Figure 6.7. Without providing the model with an initial reference, the values are sym-
metric respect to zero. From this we can see that the network will place transition
metals close around the zero, in a way that on average they will give a high contribu-
tion to the calculation of the gap, and on average form structures with low band gaps.
Other metals and anions are farther away, so their contribution will be smaller. How-
ever some reasonable trends also appear, for example despite the low contribution,
alkali metals such as Li, Na, K, Rb, and Cs will lead to progressively smaller gaps,
and in the same way F will on average give larger gaps that the other halides.

To analyze the parameters of the network we concatenated the attention weights
averaged over the three attention heads with the softmax weights used to calculate
the position of the band gap, and run a Principal Component Analysis (PCA) to reduce
the dimensionality of the obtained feature vectors. We found that with 3 dimensions
the explained variance of the data is 96% (80%, 12%, and 4% respectively). Suc-
cessively we clustered the transformed data using the k-means clustering algorithm.
This method allows to divide a set of vectors into k clusters C with centroids µ, by
minimizing the Within-Cluster Sum-of-Squares Criterion (WCSSC):

n∑
i=0

min
µj∈C

(
||xi − µj||2

)
. (6.5)

The k-means clustering algorithm requires the number of clusters as an input, there-
fore we repeated the clustering with different numbers of clusters and calculated the
respective silhouette score

s(i) = b(i)− a(i)
max{b(i), a(i)} . (6.6)

Here a(i) is the average distance between each datapoint i and all the other points
within the cluster to which i belongs, and b(i) is the average distance between point



60

2 3 4 5 6 7 8 9 10 11 12

Number of clusters

0.55

0.60

0.65

0.70

A
ve

ra
ge

si
lh

ou
et

te
sc

or
e

Figure 6.8 Average silhouette score for a different number of clusters

i and all the points in the closest cluster to which i does not belong. The silhouette
score can vary between -1 and 1. Its value approaches 1 when the clusters are very
well separated, 0 when the point i is at the edge between two overlapping clusters,
and -1 if the point has been assigned the the wrong cluster. The average silhouette
score for a different number of clusters is represented in Figure 6.8. From this analysis
we chose to split the transformed points into 3 clusters (Figure 6.9). The symmetry in
the PCA is due to the permutational symmetry of the sites A and B, i.e. each structure
appears twice as ABC2D6 and BAC2D6. The average attention weights and softmax
weights within the 3 clusters are shown in Figure 6.18. The matrices representing the
attention weights have as rows the element which representation will be updated, and
as columns the elements that affect the site that will be updated. In cluster 1, all sites
are mostly affected by the element at site C, while clusters 2 and 3 are dominated by
sites B and A, respectively. The softmax weights show that the valence band of cluster
1 is dominated by by A and B equally and C in smaller measure, while in cluster 2 and
3 both the band edges are dominated by site B and A respectively. Note however that
in this case the contribution of elements to the band edge does not necessarily reflect
the physics behind the formation of bands, but rather the way our neural network
places the energy levels to calculate a gap that matches the training gap.

Figure 6.11 shows the element distribution for each site in the 3 clusters. The
distribution is normalized so that each row adds up to one. The maximum of the scale
is reduced to 0.5 to improve the contrast. In Figure 6.12 the element distribution at
each site is shown in the different clusters, normalized in a way that each column (i.e.
each element) adds up to 1. In cluster 1 the attention weights give high importance to
the element at site C, so in this case alkali earths, Tl, Pb, Nb and N. These structures
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Figure 6.9 Silhouette scores and PCA for 3 clusters
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Figure 6.10 Average attention weights and softmax weights in the 3 clusters. The rows in the
attention weights represent the site where the element to be updated is, the columns represent
the site at which the element that will be used for the update is.
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0.5 to improve the contrast.
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Figure 6.13 Average softmax weight by element in the 3 clusters. The elements shown are
only those that appear in the cluster. A value of zero indicates that the element appears in the
cluster but the softmax weight is zero.

are oxides for alkalin earths, Pb and Nb, and fluorides for Tl and N. From Figure 6.7
we can see that the model has placed these elements close to the zero, which means
that it will give them high importance.

In Figure 6.13 the average softmax weights divided by element are shown. All the
3 clusters here behave very similarly, and most of the elements have a similar effect
on the calculation of both band edges. From Figure 6.14 one can see that the band
gap distribution in cluster 1 is centered around 3 eV, while the other clusters have a
distribution that is very similar to that of the training set.

6.5 Training With Prior

After training with the prior we calculated again the optimal number of clusters via the
silhouette score, which is 6 clusters this time (Figure 6.16). The 3-dimensional PCA
has a total explained variance of 94% (60% 23% and 11% for the three dimensions),
and the clustering is shown in Figure 6.17). Again, the symmetry of A and B site is
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Figure 6.14 Band gaps distribution in the three clusters.
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Figure 6.17 Silhouette scores and PCA for 6 clusters
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Figure 6.18 Average attention weights and softmax weights in the 3 clusters. The rows in the
attention weights represent the site where the element to be updated is, the columns represent
the site at which the element that will be used for the update is. If A and B are permuted the
clusters 1-5, 2-3, and 4-6 are equivalent.

reflected by the PCA, and specifically cluster 1-5, 2-3 and 4-6 are symmetric. From
Figure 6.18 we can see that cluster 1 and 5 are dominated by site A and B equally
(A for the VB and B for the CB in cluster 1 and the opposite for 5), cluster 2 and 3
by only B and only A, respectively, and cluster 4 and 6 by B and D (D for the VB and
B for the CB), and A and D (again D at the VB and A at the CB). In the following we
will show only the three independent clusters 1, 2 and 4. Cluster 5, 3 and 6 can be
obtained by simply swapping A and B. Figure 6.19 shows the element distribution in
each clusters, normalized in a way that the sum of each row (i.e. each site) is 1. This
plot shows what elements are the most common in each cluster, and at what lattice
site. Figure 6.20 shows the element distribution on the four lattice sites, normalized
in a way that the sum of each column (i.e. each element) is 1. This highlights if an
element on a lattice site appears more often in a specific cluster.

• Cluster 1 (5):

– Site A (VB): Al, Cr, Cu, Ga, Nb, Mo, Ag, In, and Tl.

– Site B (CB): Fe, Co, Ni, Cu, As, Ag, Sb, Hg, and Bi.
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Figure 6.21 Average softmax weight by element in the 3 independent clusters
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The VBM is calculated from elements with filled s or d states. The CBM is
calculated from elements with empty d or p states. The band gaps of this clusters
(Figure 6.22a) are distributed around 1 eV.

• Cluster 2 (3):

– Site B (VB and CB): Al, Ti, V, Cr, Mn, Cu, Ga, Nb, Mo, Ru, Rh, Pd, In, Ta,
W, Re, and Tl.

Both VBM and CBM are calculated from transition metals and some elements of
the p block. The gaps (Figure 6.22b) are distributed across a broad range and
the majority of the metallic structures are found in this cluster. The HOMO and
the LUMO of these metals (Figure 6.15)) are very close to each other.

• Cluster 4 (6):

– Site D (VB): O, F, Cl, Br, I.

– Site B (CB): K, Sc, Fe, Co, As, Y, Sb, La, Lu, Au, Hg, and Bi.

The VBM is calculated from the anions (oxygen and haides) while the conduc-
tion band is calculated from metals of the p block, closed-shell transition metals
or lanthanides and in a few cases from Fe and Co. Here the band gaps are
distributed around 3 eV (Figure 6.22c).

The elements at site C, mostly alkali metals and alkalin earths, have very low weight.
If we look at the prior (Figure 6.4) which is reflected in the HOMO and LUMO after
training (Figure 6.15) we can see that their energy levels are generally very deep in
the bands, so the models will give them low weight. When they are at site A, they
belong to clusters 2-3 and in smaller measure to cluster 4,6, while cluster 1-5 doesn’t
contain this kind of elements at site A-B (Figure 6.20).

Figure 6.21 represents the average softmax weight for each element in the 3 clus-
ters, independent of their site. Also from here we can see that in cluster 1-5 and 4-6
different metals form the two are used to band edges while in 2-3 the elements have
a similar effect on both edges.

Overall with this value of λ the model can distinguish more clusters with different
properties that are heavily influenced by the prior, as can be seen from the small shift
of the HOMO and LUMO values in Figure 6.15.

6.6 Training With a Weak Prior

If we repeat the same analysis with a lower constraint (λ = 0.0001) the model finds
4 clusters (Figure 6.24) with high weight on sites A, B, D, and C, with cluster 1 and
2 being symmetric (Figure 6.25). Figure 6.23 shows that the predicted HOMO and
LUMO values still follow the prior but with a larger standard deviation between different
structures. The elements at site A in cluster 1 that contribute to the calculation of
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Figure 6.22 Band gaps distribution in clusters 1-5, 2-3, and 4-6
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Figure 6.29 Band gaps distribution in clusters 1-2, 3, and 4

both valence and conduction band are mostly transition metals. Cluster 3, that has
a valence band dominated by D and conduction band by A,B and D, contains O and
halides at D and metals without unpaired electrons at site A-B. Cluster 4, dominated
by C at both VB and CB, contains at C alkalin earths, N,Tl, Pb, and in a few cases Mn,
Fe, Co, Se, Ru, Ti. At site A-B there are again elements without unpaired electrons.
The band gap distribution (Figure 6.29) shows that cluster 1-2 is the largest one and
resembles the most the distribution of the training set. Cluster 3 contains 129 unique
structures (258 including permutations), with a gap centered around 2eV. Cluster 4
contains 26 unique structures (52 including permutations) and has band gaps divided
in small clusters. An analysis of the content of this cluster shows that Nb, Mn, Co, Ru,
N, Se, Fe and in one case Cs at site C form structures with zero gap, Sn and Ti have
a gap of approximately 1 eV, Pb and Tl of 2 eV, Ca of 3 eV, Tl also 4 eV and Mg 6 eV.

6.7 Conclusions

In this work a message passing neural network was used to predict electronic energy
levels of single atoms in the valence and conduction bands of double perovskites. The
idea was inspired by the concept of Solid State Energy. A self-attention mechanism
was used to update the representation of each element during the forward passes of
the network, to highlight the pair-wise interactions between elements. The position
of the band edges were calculated from the electronic energy levels as a weighted
average with a softmax weight, and trained to fit the band gap. First we have shown
that by initializing the energy levels as small random numbers or by initializing them
based on a physics-inspired prior, the model is able to predict the gap with high and
comparable accuracy. When the model is not provided with a prior, the predicted
HOMO and LUMO values for each elements are symmetric respect to zero, and they
contribute equally to the calculation of the position of the band edges. To analyze the
weights of the network we defined a descriptor with the attention weights and softmax
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weights and ran a PCA followed by k-means clustering. We found 2 clusters, one
with high weight on site C, containing mostly oxides and with a band gap distribution
centered around 3 eV, and another cluster with high weight on site A-B and a band
gap distribution similar to that of the full training set.

Successively, we set an initial reference for the electronic energy levels with a
penalty term of 0.001, and found 3 clusters with high weight on A and B, on only
B, and on B and D. The first cluster contains metals at A-B, with the exception of alkali
metals, that form the valence and conduction bands. To the second cluster belong
most of the structures with two transition metals at A-B, that contribute equally to both
band edges. This cluster has a band gap distribution that is very broad, and contains
most of the metallic structures. The third cluster is dominated by the anions at site
D that form the valence band, and by metals that form the conduction band, mostly
without unpaired electrons.

We also performed the same analysis with a weaker prior, and found one cluster
with most of the transition metals and a broad band gap distribution, dominated by
site A-B, one cluster dominated by site D with metals without unpaired electrons at
A-B forming the conduction band and anions at D forming the valence band, and one
small cluster dominated by C with a few elements that are rarely found at this site.

From this analysis we can conclude that the presence of a prior and the penalty
weight does not have a strong influence on the accuracy in the band gap prediction,
but it heavily influences the way the model places the attention weights. In absence
of a prior only two categories appear (oxides and others), while with a strong prior the
attention follows the ordering of the energy levels defined by the prior. With a weak
prior the models sees two broad categories (with and without transition metals) and
one small group of outliers.

This results show that the attention weights and softmax scores can be used to gain
some insights into how the materials can be clustered according to a target property.
However, the clustering is not unique and depends on the details of the model, such
as the strength of the prior in the loss function. While this approach thus offers some
inspiration for potential composition/property relationships, these are not definitive
and should be combined with rigorous physical analysis.
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7 Assessing Deep Generative Models
in Chemical Composition Space

7.1 Motivation

While the performance of predictive machine learning models for regression or clas-
sification can be easily assessed by calculating their accuracy on a test set, this is
task is not trivial for generative models. In this case the model needs to reproduce
the underlying data distribution and generate a high number of new and diverse sam-
ples, and in the case of conditional generation, that display a target property. Some
benchmark studies have been done on organic molecules [192–195] and inorganic
materials [196]. In this work [197] we focus on the generation of inorganic materials
with a fixed structure and different chemical composition, with the formation energy as
target property. We compare the performance of three deep generative models (VAE,
GAN, and RL) trained on the well-established Elpasolite dataset by Faber et al. [115].
This dataset consists of a fully enumerated set of 2 millions structures of chemical
formula ABC2D6 and their formation energy, and was already used in the past as a
benchmark for regression models [198–202]. Using the full dataset as ground truth,
we chose some performance metrics in regard to the precision of the models, the
coverage of the target property class, and the fitness of the generated elemental dis-
tribution. These metrics, when defined only in relation to the training set, were also
adopted to search for on optimal set of hyperparameters for the three models. The
work summarized in this chapter has been published in Reference [197].

7.2 Dataset and Materials Representation

The chemical space considered in the original paper [115] consists of Elpasolites
with chemical formula ABC2D6 (Figure 7.1a) with all the permutations of 83 elements
(from H to Bi) in the 4 lattice sites. This structure prototype derives from the Elpasolite
mineral NaAlK2F6, and it is equivalent to the double perovskite structure. In their
paper, Faber et al. predicted the formation energy of these materials via Kernel Ridge
Regression, obtaining a Mean Absolute Error (MAE) of 0.1 eV, for a total of 1,974,024
chemical formulas (Figure 7.1f). However, given that the lattice sites A and B are
equivalent in the Elpasolite structure, i.e. that the chemical formulas ABC2D6 and
BAC2D6 are actually the same compound, the number of unique structures that can
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be formed with these 83 elements is halved. The original training set is consists
of 10,590 structures with their DFT formation energy, including 34 compounds that
appear as duplicates of the type ABC2D6/BAC2D6. Here we decided to first remove
the duplicates and then double the size of the training set by adding the permuted
form of each structure, with the same formation energy as the non-permuted one, to
make sure that our models learn the intrinsic symmetry of the lattice sites A and B.
The overall size of the training set, included permutations, is 21112 samples. The
structure representation adopted in this work, inspired to the original paper by Faber
et al., is an 8-dimensional vector x8D with the shell number and group number of each
element as entry. This vector has been successively scaled to have values included
in the interval (−1, 1), as this is beneficial for the training of neural networks.

x8D,scaled = 2 · x8D − 1
nrow/group

− 1 . (7.1)

Note that this representation allows the generation of non-existent elements (for ex-
ample an element between H and He), or structures that don’t belong to our search
space, such as structures with repeated elements. However, the generation of struc-
tures is not a time-limiting step, so we decided to simply discard these invalid struc-
tures when they occur during the generation process. In the following, we always refer
to valid generated samples. To enable our models to generate materials conditioned
on their formation energy, we divided the training set energies in 10 bins of equal size,
and associated to each of them a class number from 1 for the lowest energy, to 10 for
the highest energy (Figure 7.1e). Each energy class label has been represented as a
10-dimensional one-hot encoded vector.

7.3 Performance Metrics

What is required from these three generative models is the ability to generate struc-
tures in the correct energy class with high precision, while also generating as many
new structures as possible, to cover the whole chemical space. These two require-
ments are not easy to satisfy at the same time, because a model that is very well
conditioned on the energy could be able to generate only a few diverse structures,
while a model that can generate many different structures might not necessarily be
well conditioned. By exploiting the knowledge of the full Elpasolite space as calcu-
lated by KRR, the following metrics have been defined to quantitatively assess the
performance of the three models.

1) Precision (right class) is the fraction of generated compositions that actually fall
into the desired class.

Precision (right class) = Ngen
class

Ngen : (7.2)
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Here Ngen is the total number of generated samples and Ngen
class is the number of gen-

erated samples which belong to the desired class.
2) Precision (neighboring class) is the fraction of samples falling into the classes

just above and below the requested class.

Precision (neighboring class) = Ngen
class−1 +Ngen

class+1
Ngen . (7.3)

This gives information about the tails of the predicted formation energy distributions.
3) Coverage (right class) measures the fraction of unique generated compositions

in the desired class:

Coverage (right class) =
Ngen

class,unique

Nclass
. (7.4)
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4) Coverage (neighboring class) analogously measures the fraction of unique com-
positions in the classes just above and below the requested class,

Coverage (neighboring class) =
Ngen

class−1,unique +Ngen
class+1,unique

Nclass−1,unique +Nclass+1,unique
. (7.5)

5) JS-Distance measures how strongly the elemental distribution of the generated
samples differs from the corresponding distribution in the full Elpasolite space, for a
given class. Specifically, we use the Jensen-Shannon (JS) distance dJS between the
two elemental distributions p and q, defined as

dJS(p||q) = 1
4
∑
S

∑
Z

1
2p(Z|S) log2

(
p(Z|S)
m(Z|S)

)

+1
2q(Z|S) log2

(
q(Z|S)
m(Z|S)

) 1
2

,

(7.6)

Here p(Z|S) indicates the probability p of finding the element Z on the site S, and
m(Z|S) = 1

2 [p(Z|S)+q(Z|S)]. The first sum runs over all sitesA,B,C,D, the second
sum runs over all elements in the Elpasolite dataset. This statistical distance takes
values between 0 if the two distributions are identical and 1 if there isn’t any overlap.

Figure 7.2 shows some reference values for the JS-Distance when we compare the
elemental distributions of each class to the elemental distribution of every class in the
full space. This shows that when the class is the same (e.g. class 5 in the training
set compared to class 5 in the full chemical space), the JS-Distances is low, while dif-
ferent classes have high distances. Additionally, the distance between corresponding
classes is lower when the class itself includes many samples (e.g. class 5), respect
to classes with few samples (e.g. class 1) . Furthermore, the distances vary progres-
sively across the classes, so the distance between class 1 and class 2 is lower than
the distance between class 1 and class 5.

7.4 Hyperparameter Search

The architecture search was performed by randomly sampling 100 models from the
domain shown in Table 7.1, and sorting them by performance. However, in a realistic
situation the underlying data distribution (here the full Elpasolite space) is not known,
so we chose the best performing models based solely on information that is available
from the training set. To this end, we need to find a trade-off between two metrics:

1) JS-Distance between the generated distribution and the training set distribution
of the corresponding class (here we chose to train the models on class 1). This
value needs to be low to correctly reproduce the elements distribution, but it
should not be zero, because that would lead to overfitting.
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reproduced from [197] under CC BY 4.0.

2) Number of unique compositions generated. This value should be high, to make
sure that the models are able to discover new structures outside the training set.

Figure 7.3 shows the results for the first 40 models sorted by JS-Distance. Due to
the fact that different random initializations of the weights can produce slightly different
results, we initialized each model 5 times and provided the median of the results. The
performance metrics were calculated based on the generation of 10,000 samples from
class 1. Full lines show the metrics that can be calculated from the training set, and
were used to select a model, while dashed lines show other performance metrics that
need the knowledge of the full space, for comparison. The optimal solutions lie on
the left side of a pareto front (Figure 7.3, right). The vertical dashed lines show the
selected models, i.e. those that show a good compromise between a high number
of unique generate structures, and low statistical distance to the training set. The full
results of the hyperparameter search are shown in Table 7.2, 7.3, and 7.4.

The selected models, highlighted in bold in the tables are:
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Table 7.1 Search domain for random hyperparameter search. The listed hyperparameters
influence the neural network architecture (top) and the iterative training process (bottom).
Ranges reflect common values. Combinations of hyperparameters are drawn with replace-
ment from the discrete sets of values. The hyperparameters are common to the VAE, GAN
and RL model and the same combinations are used, with an increased number of training
steps for RL due to the increased training set size. Note, that the learning rate is kept constant
during training.

Parameter Values
Number of layers 2, 3, 4, 5, 6, 7, 8
Nodes per layer 8, 32, 128, 256, 512, 1024
Latent space dimension** 2, 3, 4, 5, 6, 8
β*** 5
Update steps* 1e4, 2.5e4, 5e4, 1e5, 1.5e5, 2e5
Batch size 10, 100, 250, 500, 1000, 2000
Learning rate 1e-6, 1e-5, 1e-4, 1e-3, 1e-2

*for RL, these values are multiplied by 8, **does not exist for RL, ***RL only

• VAE: the scaled input x8D,scaled is concatenated to the class one-hot encoded
vector, then encoded to a 8-dimensional latent space, and decoded into the
scaled 8-dimensional representation of the composition. Both the encoder and
decoder networks have 2 hidden layers with 256 nodes. Layer normalization [165]
is employed. The final output function of the decoder is a hyperbolic tangent that
returns values between -1 and 1. The model is trained for 10,000 network up-
dates on batches of 500 samples each, using the Adam optimizer [167] with a
learning rate of 0.001. The regularization parameter λ in the loss is fixed at 0.1
[203].

• GAN: the scaled input x8D,scaled concatenated to the class one-hot encoded vec-
tor is passed to Gθ and decoded to the scaled structural representation, again
employing a hyperbolic tangent output layer. The network is trained for 200,000
update steps on batches of 100 samples with a learning rate of 0.00001. The
gradient penalty λ is 10.

• RL: the network architecture has five hidden layers with 512 nodes each, with
layer normalization [165]. The RL model was trained for 800,000 network up-
dates with a batch size of 250, and a learning rate of 0.00001. Following com-
mon practice in the DQN literature [204], a discount factor γ=0.999 is used and
the target network is synchronized every ten steps. The reward was defined as

r(s, a) =


0 if s′ non-final
1 if s′ final and in desired class
−1 if s′ final and not in desired class

(7.7)
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Figure 7.3 Results of the hyperparameters search for the first 40 models sorted in order
of JS-Distance respect to the training set. The lines are the median value after 5 random
initializations, the shaded area represent the minimum and maximum of the 5 values. Figure
reproduced from [197] under CC BY 4.0.

7.5 Generation in a Minority Class

The first challenge for the generative models is to generate rare structures, for exam-
ple in our case we will choose structures in the lowest energy class (class 1). This
class is one of the the least populated and contains 86 samples, corresponding to
0.4% of the total training set. In the full Elpasolite space, class 1 contains 3,757 com-
positions, so these 86 samples are 2% of the whole class. Each model was trained
50 times with 50 different random initializations, and the results were averaged. After
training the three models, we sampled 250,000 (valid) compositions as shown in Fig-
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ure 7.4. The generated samples are classified as novel discoveries when they were
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Figure 7.4 Performance of VAE (top left), GAN (top right) and RL (bottom) for the first
250,000 generated valid samples, when conditioned on the minority class 1. Figure repro-
duced from [197] under CC BY 4.0.

not previously found in the training set, rediscoveries, when they were already in the
training set, and repetitions when they had already been generated by the model. The
novel discoveries, were also divided in class 1 (the actual class that was requested),
class 2 (the neighboring class), and remaining classes. As we can see from Fig-
ure 7.4, the models first generate many new structures, but then tend to saturate, as
the repetitions prevail. The number of rediscoveries remains overall low. The novel
discoveries fall mainly in the desired class, with some contribution from the neigh-
boring class. This shows that the models are learning a class-conditional probability
distribution, so at first the most likely samples appear, and then when repeating the
sampling the probability of sampling from the tails of the distribution increases. Fol-
lowing these observations, we chose to sample 10,000 structures as threshold for
saturation.

Figure 7.5 shows the energy distribution of the generated samples compared to the
training set. As we can see, the three models generate a distribution peaked in the
right class, with some tail in the neighboring one. This is likely a consequence of our
choice to define classes with rigid boundaries, while the models produce more smooth
distributions. From this we can see that the task of producing rare samples has been
completed successfully. The metrics in Table 7.5 show the results quantitatively. All
the three models show high precision, with more than 65% of the generated samples
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Figure 7.5 Formation energy distribution (in 0.2 eV/atom bins) of the unique class 1 condi-
tioned compositions proposed by the three generative models (VAE, GAN, RL) over 10,000
valid samples. Additionally shown is the corresponding distribution over the entire training set
of 21,112 compositions. Figure reproduced from [197] under CC BY 4.0.

falling in the right class, an overall more than 94% falling in class 1 and 2. The
coverage is also above 50% for all the models. The low JS distance shows that
the models are able to reproduce the correct element distribution, even better than
the training set class 1, which has a JS distance of 0.236 to the full space class 1.
Figure 7.6 shows the normalized element distribution over the 4 lattice sites. Some
insight in how to generate Elpasolites with very negative formation energy can be
gained from this. Class 1 shows some prominent features, such as a prevalence of
fluorine on site D, likely due to its high electronegativity. Other common features are
alkali metals and alkaline earths on site C.

7.6 Baseline Model

As baseline model for the generation of samples in a minority class we chose an
enrichment-based model. This model enables us to verify whether the generative
models are learning the distribution of the required class, or they are simply memo-
rizing combinations of elements that are likely to be found in the required class, and
reproposing these combinations during the generation phase.
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Figure 7.6 Normalized element distributions p(Z|S) in class 1 over the four sites (A, B, C, D)
for the full Elpasolite space, the training set and structures generated by the three models. The
color scale is chosen to depict the details of the overall distribution. The value of fluorine on
lattice site D surpasses its limits, exceeding 0.997 in all cases. Figure reproduced from [197]
under CC BY 4.0.

To this end, we extracted from the training set all possible elemental triples of the
form NBC2D6, ANC2D6, ABN2D6, and ABC2N6 where N is any other element from
H to Bi. This was done separately for class 1 and for the remaining classes 2-10,
yielding 344 triples in total and 320 unique ones. For each triple i in class 1, we
calculated the enrichment score χi

χi = (ni
class1/N

structures
class1 )

(ni
class2−10/N

structures
class2−10 ) (7.8)

where ni
class1 indicates the occurences of triple i in class 1 of the training set, ni

class2−10
the occurences of triple i in class 2-10, and N structuresclass indicates the total number
of structures in the class (N structures

class1 = 86 and N structures
class2−10 = 21,026).

A high enrichment score of a triple then indicates a high probability of appearing
in class 1. We then ranked the first 25, 50 and 100 triples based on this score, and
used them to find class 1 structures in the full Elpasolite space. The results of this
analysis are collected in Table 7.6. Among the best ranked unique triples, we found
2, 12 and 224 triples with the same enrichment score, each occurring 3, 2, and 1
times in class 1, and did not occur in classes 2-10 at all (ni

class2−10=0), therefore we
set ni

class2−10=0.1 to avoid division by 0. For the final selections of the 25, 50 and 100
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best triples, we always include these 14 best ranked, while completing the selection
by randomly drawing 11, 36 and 86 triples among the next best triples.

If we compare these values to the generative models (Table 7.5), we can see that
enrichment scores allow the prediction of class 1 structures, but the generative models
are significantly more accurate in terms of coverage, precision and JS-distance. This
indicates that the generative models are learning higher order correlations that are
not reflected in the enrichment scores.

7.7 Generation in the Majority Class

The second task for the generative models is to test their capacity, i.e. the ability
to generate many distinct samples. This will be tested on class 5, which contains
907,094 elements and represents 46% of the full Elpasolite space. The training set
contains 9,650 class 5 structures (46% of the training set), which are only 1% of the
all the possible class 5 structures, so even a smaller fraction of the structures in class
1. The same VAE and GAN could be used to generate structures in class 5, while
the RL model needs to be retrained on each separate class. We generated 25 million
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Figure 7.7 Same as Figure 7.4, but for a VAE (top left), GAN (top right) and RL (bottom)
conditioned on the majority class 5. Figure reproduced from [197] under CC BY 4.0.

valid samples to make sure that the models are saturated (Figure 7.7) and calculated
the same performance metrics.
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Table 7.7 shows the calculated metrics. Both GAN and VAE achieve average class
coverage of 86% or higher, with precision between 50 and 60%. In contrast, the
RL model achieves significantly higher precision (87% on average), but lower cover-
age. Such trade-off between precision and coverage is not necessarily intrinsic to the
models themselves, but it was present also during the hyperparameter search when
comparing different architectures for the same model. For example, the RL could
achieve higher coverage at the expense of lower precision by decreasing the inverse
temperature β in Eq. 4.11.

However, the JS distance for the RL models is systematically larger than VAE and
GAN. As we can see from Figure 7.8, the VAE and GAN produce an even element dis-
tribution across the periodic table, while RL focuses on a subset of elements. These
subsets correspond to different local minima that can be reached by re-initializing the
model. For this reason, the VAE and GAN, as distributional learners, seem to be more
suited for this task.

7.8 Influence of Training Data

The third task for the generative models is to try to reduce the amount of DFT calcu-
lations they rely on. Up to now, the models were trained on a set of 21,112 structures
that required 10,556 calculations due to permutational symmetry at the A/B site. This
amounts to 1% of the full space. However, we would need to perform other calcula-
tions on the generated structures to verify that they actually belong to the right class.
This amounts to a few thousands more calculations, which is still preferable to random
sampling or brute-force screening, but is still a limitation. For this reason we reduced
the size of the training set as shown in Figure 7.9. We also compared our results
with models trained on the original training set without permutational symmetry. The
results are shown in Figure 7.9.

This shows that models trained on 10,000 data points including permutations (which
would require only 5,000 DFT calculations) reach the same performance as models
trained on the original set, while reducing the number of DFT calculations by a factor
of two. In general, we find that both precision and coverage for the target class de-
crease when the training set size decreases, and the JS-Distance between generated
and target distribution increases. Here, the RL models seem less sensitive, retaining
higher coverages for the smallest training sets.

However, even small training sets of 1000 samples yield models capable of discov-
ering a significant number of new materials. Taking the GAN as an example, with
training set size of 1000 compositions (500 DFT calculations), 11% (> 410 samples)
of all possible class 1 compositions are discovered, easily surpassing the 86 samples
found in the original training set. With a precision of 50%, this means that approx-
imately 1000 additional DFT calculations would be needed to obtain the formation
energies of all generated samples. With random sampling, finding the same number
of class 1 materials would require 220,000 DFT calculations (i.e. a factor 100 more).
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It is also important to note here that all model hyperparameters were kept fixed,
even if small datasets might need a different network architecture. Furthermore, ran-
dom sampling is a fairly strong baseline in this example due to the limited size of the
Elpasolite composition space. In reality, chemical space is practically unlimited and
brute-force random search would not be a viable strategy.

7.9 Conclusions

We herein assessed the performance of three deep generative models (VAE, GAN
and RL) for the exploration of a large comoposition space. The fully enumerated El-
pasolite dataset enabled us to define metrics for precision, coverage and elemental
distribution. Three simple model architectures were selected based on metrics that
can be calculated solely from the training set. All studied models were capable of
reliably generating candidates within the desired formation energy classes, with high
precision and high coverage of the space. The RL models showed greater robustness
when trained on small datasets, but also greater variance between differently initial-
ized models (i.e. a tendency to converge to different local minima), while the VAE and
GAN produced models that more reproduced the target elemental distributions, with
lower the JS-Distance.

From a technical perspective, the RL models were retrained with a different reward
function for each requested class independently, while the VAE and GAN can learn
the distribution of all the classes simultaneously. Among these two, the VAE showed
higher precision and was overall best suited for large scale materials discovery. How-
ever, if the objective was to simply to generate a limited number of high-quality sam-
ples, a target-oriented RL model may be the better choice. RL furthermore has the
advantage that the reward function can easily be modified to accommodate more
complex design targets.

Compared to regression models, which are robust and simpler to train, generative
models might find better application in the discovery of exceptional materials that are
underrepresented in the training set, such as in our minority class generation example.
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VAE
Experiment ID 1 2 3 4 5 6 7 8 9 10
JS-Distance (training set, class 1) 0.141 0.141 0.145 0.154 0.160 0.162 0.172 0.179 0.180 0.180
Unique compositions 1073 1092 1093 1094 658 1348 629 1631 1218 412
Coverage (right class) 21 22 22 21 13 28 12 31 22 8
Coverage (neigh. class) 2 2 2 2 1 2 1 3 2 1
Precision (right class) 85 85 86 84 83 85 82 84 83 83
Precision (neigh. class) 15 15 14 16 15 14 17 15 16 17
JS-Distance (full set, class 1) 0.168 0.161 0.167 0.167 0.165 0.165 0.170 0.154 0.179 0.207
Unique rediscoveries 89 90 90 89 80 93 76 94 86 62
Learning rate 1e-3 1e-4 1e-3 1e-3 1e-5 1e-4 1e-5 1e-4 1e-3 1e-2
Batch size 500 2000 1000 500 500 100 1000 2000 100 2000
Latent space dimension 3 3 3 5 2 4 2 4 3 2
Nodes per layer 256 256 128 256 512 1024 512 1024 256 512
Number of layers 6 6 7 8 6 8 7 8 6 5
Update steps 1.5e5 2e5 1.5e5 5e4 1e5 2e5 2.5e4 1e4 1e5 1.5e5
Experiment ID 11 12 13 14 15 16 17 18 19 20
JS-Distance (training set, class 1) 0.185 0.185 0.189 0.189 0.193 0.197 0.202 0.207 0.214 0.220
Unique compositions 1575 1720 747 1537 1248 1934 2040 1729 1362 2037
Coverage (right class) 31 35 13 31 27 38 36 32 23 34
Coverage (neigh. class) 2 2 1 2 2 3 3 3 2 4
Precision (right class) 86 86 83 86 86 85 82 84 81 81
Precision (neigh. class) 13 13 16 14 14 14 17 15 17 18
JS-Distance (full set, class 1) 0.151 0.155 0.162 0.158 0.154 0.146 0.150 0.161 0.164 0.150
Unique rediscoveries 87 92 73 92 90 94 97 91 79 97
Learning rate 1e-3 1e-5 1e-3 1e-3 1e-2 1e-5 1e-5 1e-4 1e-3 1e-6
Batch size 1000 250 2000 1000 500 100 1000 1000 500 1000
Latent space dimension 8 6 3 5 8 6 5 4 3 4
Nodes per layer 128 1024 32 128 1024 1024 1024 512 128 1024
Number of layers 8 8 8 7 4 8 5 7 4 5
Update steps 2.5e4 2e5 2e5 5e4 1.5e5 2e5 1e5 1e4 2.5e4 1e5
Experiment ID 21 22 23 24 25 26 27 28 29 30
JS-Distance (tr. set, class 1) 0.231 0.237 0.241 0.246 0.248 0.250 0.251 0.251 0.253 0.254
Unique compositions 2292 2593 1527 2651 2888 2989 2946 2644 2209 588
Coverage (right class) 43 47 22 48 52 53 52 48 34 10
Coverage (neigh. class) 4 5 3 4 5 5 5 4 4 1
Precision (right class) 85 83 78 85 84 84 83 84 81 85
Precision (neigh. class) 14 16 19 14 16 15 16 15 18 13
JS-Distance (full set, class 1) 0.157 0.163 0.178 0.162 0.168 0.164 0.162 0.167 0.173 0.200
Unique rediscoveries 94 92 77 95 89 91 96 100 81 41
Learning rate 1e-5 1e-3 1e-6 1e-5 1e-4 1e-3 1e-6 1e-6 1e-4 1e-3
Batch size 250 100 2000 500 250 500 500 100 250 1000
Latent space dimension 6 6 3 6 8 8 8 8 4 2
Nodes per layer 512 256 256 128 1024 256 512 1024 128 256
Number of layers 6 6 8 6 5 3 8 8 5 3
Update steps 1e5 2.5e4 5e4 2e5 2.5e4 1e4 1.5e5 2e5 2.5e4 1e4
Experiment ID 31 32 33 34 35 36 37 38 39 40
JS-Distance (tr. set, class 1) 0.254 0.263 0.264 0.266 0.271 0.272 0.273 0.274 0.275 0.277
Unique compositions 1334 3044 2420 4669 3013 578 3437 2144 177 3350
Coverage (right class) 19 45 35 62 46 10 51 35 3 45
Coverage (neigh. class) 3 6 5 10 6 1 7 4 0 7
Precision (right class) 81 78 79 69 76 83 77 78 75 73
Precision (neigh. class) 17 20 19 27 21 16 21 19 25 24
JS-Distance (full set, class 1) 0.199 0.178 0.176 0.163 0.180 0.229 0.192 0.184 0.257 0.194
Unique rediscoveries 56 91 64 82 77 31 89 51 22 90
Learning rate 1e-4 1e-5 1e-4 1e-2 1e-5 1e-5 1e-6 1e-5 1e-2 1e-6
Batch size 100 500 100 1000 10 10 500 1000 2000 10
Latent space dimension 3 5 4 8 5 2 6 6 3 5
Nodes per layer 512 256 256 32 1024 1024 1024 32 1024 1024
Number of layers 8 6 2 2 7 8 4 8 6 7
Update steps 1e4 2.5e4 1.5e5 1e4 5e4 1e5 5e4 2e5 1e5 1e5

Table 7.2 Hyperparameter search for the VAE. Chosen model highlighted in bold.
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GAN
Experiment ID 1 2 3 4 5 6 7 8 9 10
JS-Distance (training set, class 1) 0.116 0.142 0.172 0.183 0.211 0.225 0.227 0.228 0.233 0.234
Unique compositions 1244 1148 1624 2522 3276 2666 1898 3543 4181 3928
Coverage (right class) 24 22 27 41 48 38 31 50 54 52
Coverage (neigh. class) 2 2 3 5 7 6 4 7 9 9
Precision (right class) 79 78 76 74 71 70 73 69 68 69
Precision (neigh. class) 20 21 23 24 27 26 26 27 28 27
JS-Distance (full set, class 1) 0.187 0.178 0.186 0.150 0.157 0.158 0.195 0.164 0.160 0.174
Unique rediscoveries 92 94 92 102 101 74 66 104 90 94
Learning rate 1e-4 1e-5 1e-5 1e-5 1e-5 1e-4 1e-4 1e-4 1e-5 1e-3
Batch size 2000 250 100 1000 250 1000 2000 250 500 500
Latent space dimension 3 6 6 5 6 4 4 8 6 8
Nodes per layer 256 1024 1024 1024 512 512 1024 1024 128 256
Number of layers 6 8 8 5 6 7 8 3 6 3
Update steps 2e5 2e5 2e5 1e5 1e5 1e4 1e4 2.5e4 2e5 1e4
Experiment ID 11 12 13 14 15 16 17 18 19 20
JS-Distance (training set, class 1) 0.252 0.257 0.259 0.259 0.277 0.282 0.291 0.295 0.298 0.298
Unique compositions 4660 3604 3693 4821 2634 1553 3213 4766 3457 965
Coverage (right class) 63 45 45 60 30 23 42 52 40 14
Coverage (neigh. class) 10 8 8 10 6 3 7 10 7 2
Precision (right class) 67 63 64 63 64 66 67 57 65 65
Precision (neigh. class) 28 31 30 30 29 30 28 31 28 28
JS-Distance (full set, class 1) 0.159 0.185 0.191 0.170 0.223 0.265 0.227 0.211 0.224 0.243
Unique rediscoveries 98 77 76 97 59 53 79 96 75 35
Learning rate 1e-5 1e-6 1e-4 1e-6 1e-4 1e-4 1e-5 1e-5 1e-6 1e-5
Batch size 100 1000 250 500 100 100 10 500 100 500
Latent space dimension 8 4 4 6 4 4 5 5 8 2
Nodes per layer 512 1024 128 1024 256 1024 1024 256 1024 512
Number of layers 2 5 5 4 2 8 7 6 8 6
Update steps 2e5 1e5 2.5e4 5e4 1.5e5 2e5 5e4 2.5e4 2e5 1e5
Experiment ID 21 22 23 24 25 26 27 28 29 30
JS-Distance (training set, class 1) 0.317 0.329 0.334 0.338 0.353 0.353 0.382 0.393 0.409 0.418
Unique compositions 1679 1002 3688 628 6470 2502 1284 6447 2001 391
Coverage (right class) 16 10 29 7 47 21 11 42 12 4
Coverage (neigh. class) 3 2 7 1 12 5 2 8 5 1
Precision (right class) 62 54 48 59 41 50 60 35 30 51
Precision (neigh. class) 30 36 36 36 32 32 28 24 48 27
JS-Distance (full set, class 1) 0.274 0.285 0.261 0.288 0.292 0.300 0.336 0.317 0.352 0.398
Unique rediscoveries 34 20 65 13 101 45 18 94 32 8
Learning rate 1e-3 1e-5 1e-4 1e-3 1e-5 1e-6 1e-4 1e-6 1e-3 1e-5
Batch size 500 1000 2000 1000 10 500 100 2000 100 10
Latent space dimension 3 2 4 2 8 8 3 6 6 2
Nodes per layer 128 512 32 256 128 512 512 512 256 1024
Number of layers 4 7 2 3 3 8 8 5 6 8
Update steps 2.5e4 2.5e4 1e5 1e4 1e5 1.5e5 1e4 2.5e4 2.5e4 1e5
Experiment 31 32 33 34 35 36 37 38 39 40
JS-Distance (training set, class 1) 0.422 0.423 0.432 0.478 0.501 0.505 0.514 0.526 0.529 0.531
Unique compositions 1273 1514 2904 147 4167 3457 2989 1159 2030 5463
Coverage (right class) 11 10 15 2 13 7 9 3 2 9
Coverage (neigh. class) 2 2 4 0 4 3 4 1 1 3
Precision (right class) 49 42 39 44 21 15 19 48 11 6
Precision (neigh. class) 27 32 28 50 20 20 28 17 9 19
JS-Distance (full set, class 1) 0.350 0.381 0.389 0.466 0.453 0.469 0.483 0.495 0.477 0.510
Unique rediscoveries 24 21 44 4 64 44 40 14 22 87
Learning rate 1e-4 1e-4 1e-6 1e-3 1e-5 1e-6 1e-3 1e-3 1e-6 1e-4
Batch size 10 10 10 500 10 250 10 2000 250 1000
Latent space dimension 3 3 5 3 5 4 6 3 6 8
Nodes per layer 32 128 1024 256 256 256 128 32 128 8
Number of layers 4 6 7 6 5 4 5 8 7 2
Update steps 1.5e5 2.5e4 1e5 1.5e5 2.5e4 1e5 1e4 2e5 2e5 1e5

Table 7.3 Hyperparameter search for the GAN. Chosen model highlighted in bold.



90

RL
Experiment ID 1 2 3 4 5 6 7 8 9 10
JS-Distance (training set, class 1) 0.244 0.249 0.254 0.259 0.261 0.267 0.270 0.270 0.270 0.279
Unique compositions 2376 2893 2635 2579 2445 3177 2681 2576 2741 2965
Coverage (right class) 49 55 53 51 50 56 49 50 52 51
Coverage (neigh. class) 3 4 3 3 3 5 4 3 4 5
Precision (right class) 82 68 71 77 74 61 58 73 68 55
Precision (neigh. class) 18 30 28 23 25 39 39 25 31 41
JS-Distance (full set, class 1) 0.187 0.182 0.194 0.191 0.211 0.210 0.215 0.219 0.210 0.222
Unique rediscoveries 81 71 67 61 67 61 65 53 73 61
Learning rate 1e-6 1e-5 1e-2 1e-5 1e-5 1e-3 1e-5 1e-2 1e-5 1e-5
Batch size 100 250 250 1000 1000 100 250 100 500 100
Nodes per layer 1024 512 512 512 1024 256 1024 512 512 1024
Number of layers 8 6 8 7 5 6 8 6 6 8
Update steps 1.6e6 8.0e5 1.6e6 2.0e+05 8.0e5 8.0e5 1.6e6 8.0e5 8.0e5 1.6e6
Experiment ID 11 12 13 14 15 16 17 18 19 20
JS-Distance (training set, class 1) 0.285 0.286 0.288 0.288 0.292 0.292 0.292 0.295 0.297 0.297
Unique compositions 2819 2786 2987 2810 3670 3089 3079 2557 2322 3381
Coverage (right class) 52 48 54 52 56 52 53 48 46 53
Coverage (neigh. class) 4 4 4 3 4 5 4 3 3 3
Precision (right class) 73 70 74 76 63 64 64 81 67 69
Precision (neigh. class) 26 29 24 21 21 31 30 17 31 25
JS-Distance (full set, class 1) 0.206 0.244 0.241 0.228 0.243 0.236 0.212 0.260 0.269 0.226
Unique rediscoveries 55 53 69 55 78 54 52 53 53 56
Learning rate 1e-5 1e-3 1e-3 1e-3 1e-4 1e-3 1e-4 1e-4 1e-3 1e-4
Batch size 10 1000 10 100 100 500 1000 10 1000 2000
Nodes per layer 1024 128 32 256 512 256 512 32 128 1024
Number of layers 8 7 6 6 8 8 7 4 7 8
Update steps 8.0e5 4.0e5 8.0e5 2.0e5 8.0e4 4.0e5 8.0e4 1.2e6 1.2e6 8.0e4
Experiment ID 21 22 23 24 25 26 27 28 29 30
JS-Distance (training set, class 1) 0.304 0.307 0.308 0.311 0.314 0.315 0.317 0.320 0.323 0.323
Unique compositions 2490 1444 2801 1934 2108 2135 1959 1824 2230 2615
Coverage (right class) 38 32 52 37 42 39 44 41 42 47
Coverage (neigh. class) 3 1 3 2 3 2 2 2 3 2
Precision (right class) 69 85 81 73 73 74 93 82 68 70
56
Precision (neigh. class) 29 15 16 27 24 18 7 18 31 19
JS-Distance (full set, class 1) 0.279 0.278 0.246 0.277 0.295 0.269 0.254 0.254 0.250 0.273
Unique rediscoveries 37 59 62 35 58 39 41 44 52 56
Learning rate 1e-3 1e-6 1e-2 1e-3 1e-4 1e-3 1e-6 1e-5 1e-2 1e-5
Batch size 2000 500 100 100 1000 500 10 500 100 10
Nodes per layer 32 512 512 32 32 128 1024 256 256 1024
Number of layers 8 8 6 4 2 4 7 6 5 8
Update steps 1.6e6 1.2e6 2.0e5 1.2e6 8.0e5 2.0e5 8.0e5 2.0e5 1.6e6 4.0e5
Experiment ID 31 32 33 34 35 36 37 38 39 40
JS-Distance (training set, class 1) 0.325 0.329 0.331 0.331 0.331 0.332 0.334 0.336 0.341 0.343
Unique compositions 1871 1931 2193 2503 2604 3270 1649 2576 2246 1741
Coverage (right class) 34 39 46 45 46 46 38 38 43 34
Coverage (neigh. class) 2 2 2 3 3 4 1 3 2 2
Precision (right class) 89 78 86 83 71 93 74 89 76
Precision (neigh. class) 44 10 21 11 12 21 6 19 8 23
JS-Distance (full set, class 1) 0.299 0.290 0.245 0.283 0.285 0.287 0.263 0.324 0.300 0.307
Unique rediscoveries 42 40 42 55 56 71 32 59 50 48
Learning rate 1e-2 1e-3 1e-4 1e-6 1e-5 1e-4 1e-4 1e-4 1e-6 1e-2
Batch size 1000 1000 250 1000 10 10 250 2000 500 250
Nodes per layer 128 256 128 128 128 128 1024 32 256 256
Number of layers 8 3 5 4 3 6 3 2 5 6
Update steps 8.0e5 8.0e4 2.0e5 4.0e5 8.0e5 2.0e5 2.0e5 8.0e5 2.0e5 1.6e6

Table 7.4 Hyperparameter search for the RL. Chosen model highlighted in bold.
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Table 7.5 Performance metrics for the three generative models conditioned on the minority
class 1after 10,000 valid samples. Shown are averages over 50 model fits together with the
standard deviation.

RL VAE GAN
Precision (right class) 69± 8% 83± 1% 66± 2 %
Precision (neigh. class) 30± 7% 16± 1% 28± 1 %
Coverage (right class) 53± 3% 54± 2% 62± 1 %
Coverage (neigh. class) 4± 1% 5± 0% 10± 1 %
JS-Distance 0.20± 0.03 0.16± 0.01 0.16± 0.01

Table 7.6 Comparison of performance metrics for minority class 1 sample generation by the
generative models and the substructure enrichment based sample selection. For equally
ranked triples, random selection was performed 50 times and mean and standard deviation
are reported.

Enrich 25 Enrich 50 Enrich 100
Precision (right class) 41± 4% 33± 3% 30± 2%
Precision (neigh. class) 37± 3% 35± 3% 35± 2%
Coverage (right class) 9± 1% 15± 1% 25± 2%
Coverage (neigh. class) 2± 0% 3± 0% 6± 0%
JS-Distance 0.36± 0.03 0.34± 0.02 0.32± 0.01

Table 7.7 Performance metrics for the three generative models conditioned to generate ma-
jority class 5 compositions after 25 million valid samples. Shown are averages over 50 model
fits together with the standard deviation.

RL VAE GAN
Precision (right class) 87± 7% 58± 1% 54± 1 %
Precision (neigh. classes) 13± 7% 34± 1% 36± 1 %
Coverage (right class) 44± 15% 86± 9% 89± 2 %
Coverage (neigh. class) 9± 4% 82± 11% 85± 3 %
JS-Distance 0.49± 0.14 0.21± 0.01 0.16± 0.01
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Figure 7.8 Top: Elemental distribution for class 5. For the RL model, results of 3 different
model fits are shown to illustrate that different (local) minima are reached. A large divergence
between RL and trainings dataset is clearly visible in these solutions, also explaining the
overall lower space coverage produced by the RL model. The occurrence of such local minima
is known [205, 206]. The could potentially be broadened by decreasing the hyperparameter β
in the RL policy. Figure reproduced from [197] under CC BY 4.0.
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Figure 7.9 Influence of training set size on the performance metrics of VAE, GAN and RL
models for minority class generation, after 10,000 generated samples. Shown are averages
over 50 model fits employing 50 different random training subsets. Shaded areas represent
the corresponding standard deviations. Figure reproduced from [197] under CC BY 4.0.
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Summary and Conclusions

Many materials in the fields of energy conversion, electronics, catalysis and and
magneto-optics are based on the double perovskite structure ABC2D6. Its four lattice
sites can host numerous combinations of chemical elements leading to a large variety
of properties. The simple crystal structure makes it an ideal candidate to highlight the
relation between chemical composition and properties. Here we employed electronic
structure calculation and different machine learning methods to explore the chemical
space of double perovskites, with a special focus on photovoltaic applications.

In the first part we studied the power conversion efficiency, carriers effective mass
and thermodynamic stability of halide double perovskites, with the aid of a regression
model based on a convolutional neural network and the periodic table representation.
Our work showed that there is a necessary trade-off between the properties that are
desirable for an efficient and stable photovoltaic device.

In the second part we adopted a message passing neural network with explainable
parameters to predict electronic energy levels in the bands, and the band gap of dou-
ble perovskites. A principal component analysis followed by clustering of the network
parameters showed that it is possible to group these materials in families with similar
behavior based on what elements are present at the four lattice sites. However, the
properties that the model uses to form the clusters are heavily influenced by the pres-
ence of a prior and its relative weight, and it is therefore fundamental to couple this
method with a rigorous physical analysis.

The third part was dedicated to the inverse design of materials with the formation
energy as a target property. The three generative models that were chosen for this
task (VAE, GAN and RL) were able to propose many new compositions in the tar-
get property class with high precision and robustness, even with a reduced training
set size. In particular, they showed a very promising performance when generating
rare samples, which is highly desirable in data enhancement and materials discovery
applications.
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